Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling
- URL: http://arxiv.org/abs/2010.08641v2
- Date: Wed, 3 Mar 2021 16:02:55 GMT
- Title: Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling
- Authors: Carlos A. Loza, Laura L. Colgin
- Abstract summary: We propose a generative model for single-channel EEG that incorporates the constraints experts actively enforce during visual scoring.
We derive algorithms for exact, tractable inference as a special case of Generalized Expectation Maximization.
We validate the model on three public datasets and provide support that more complex models are able to surpass state-of-the-art detectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a generative model for single-channel EEG that incorporates the
constraints experts actively enforce during visual scoring. The framework takes
the form of a dynamic Bayesian network with depth in both the latent variables
and the observation likelihoods-while the hidden variables control the
durations, state transitions, and robustness, the observation architectures
parameterize Normal-Gamma distributions. The resulting model allows for time
series segmentation into local, reoccurring dynamical regimes by exploiting
probabilistic models and deep learning. Unlike typical detectors, our model
takes the raw data (up to resampling) without pre-processing (e.g., filtering,
windowing, thresholding) or post-processing (e.g., event merging). This not
only makes the model appealing to real-time applications, but it also yields
interpretable hyperparameters that are analogous to known clinical criteria. We
derive algorithms for exact, tractable inference as a special case of
Generalized Expectation Maximization via dynamic programming and
backpropagation. We validate the model on three public datasets and provide
support that more complex models are able to surpass state-of-the-art detectors
while being transparent, auditable, and generalizable.
Related papers
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Variational Predictive Routing with Nested Subjective Timescales [1.6114012813668934]
We present Variational Predictive Routing (PRV) - a neural inference system that organizes latent video features in a temporal hierarchy.
We show that VPR is able to detect event boundaries, disentangletemporal features, adapt to the dynamics hierarchy of the data, and produce accurate time-agnostic rollouts of the future.
arXiv Detail & Related papers (2021-10-21T16:12:59Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
arXiv Detail & Related papers (2021-06-03T23:41:11Z) - Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics [21.24885597341643]
Conditional Flows (CNFs) are flexible generative models capable of representing complicated distributions with high dimensionality and interdimensional correlations.
We propose MotionFlow as a novel approach that autoregressively normalizes the output on the temporal input features.
We apply our method to different tasks, including prediction, motion prediction time series forecasting, and binary segmentation.
arXiv Detail & Related papers (2021-04-09T14:30:35Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.