Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search
- URL: http://arxiv.org/abs/2102.01486v1
- Date: Tue, 2 Feb 2021 13:46:58 GMT
- Title: Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search
- Authors: Cheng Ma, Jiwen Lu, Jie Zhou
- Abstract summary: We propose a novel deep hashing method for scalable multi-label image search.
A new rank-consistency objective is applied to align the similarity orders from two spaces.
A powerful loss function is designed to penalize the samples whose semantic similarity and hamming distance are mismatched.
- Score: 90.30623718137244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As hashing becomes an increasingly appealing technique for large-scale image
retrieval, multi-label hashing is also attracting more attention for the
ability to exploit multi-level semantic contents. In this paper, we propose a
novel deep hashing method for scalable multi-label image search. Unlike
existing approaches with conventional objectives such as contrast and triplet
losses, we employ a rank list, rather than pairs or triplets, to provide
sufficient global supervision information for all the samples. Specifically, a
new rank-consistency objective is applied to align the similarity orders from
two spaces, the original space and the hamming space. A powerful loss function
is designed to penalize the samples whose semantic similarity and hamming
distance are mismatched in two spaces. Besides, a multi-label softmax
cross-entropy loss is presented to enhance the discriminative power with a
concise formulation of the derivative function. In order to manipulate the
neighborhood structure of the samples with different labels, we design a
multi-label clustering loss to cluster the hashing vectors of the samples with
the same labels by reducing the distances between the samples and their
multiple corresponding class centers. The state-of-the-art experimental results
achieved on three public multi-label datasets, MIRFLICKR-25K, IAPRTC12 and
NUS-WIDE, demonstrate the effectiveness of the proposed method.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Multi-label Cluster Discrimination for Visual Representation Learning [27.552024985952166]
We propose a novel Multi-Label Cluster Discrimination method named MLCD to enhance representation learning.
Our method achieves state-of-the-art performance on multiple downstream tasks including linear probe, zero-shot classification, and image-text retrieval.
arXiv Detail & Related papers (2024-07-24T14:54:16Z) - RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
This paper introduces RankMatch, an innovative approach for Semi-Supervised Label Distribution Learning (SSLDL)
RankMatch effectively utilizes a small number of labeled examples in conjunction with a larger quantity of unlabeled data.
We establish a theoretical generalization bound for RankMatch, and through extensive experiments, demonstrate its superiority in performance against existing SSLDL methods.
arXiv Detail & Related papers (2023-12-11T12:47:29Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain.
We propose a cross-domain discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples.
In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning.
arXiv Detail & Related papers (2021-06-08T07:35:40Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
We propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative)
We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.
arXiv Detail & Related papers (2020-08-16T11:07:44Z) - Self-Supervised Bernoulli Autoencoders for Semi-Supervised Hashing [1.8899300124593648]
This paper investigates the robustness of hashing methods based on variational autoencoders to the lack of supervision.
We propose a novel supervision method in which the model uses its label distribution predictions to implement the pairwise objective.
Our experiments show that both methods can significantly increase the hash codes' quality.
arXiv Detail & Related papers (2020-07-17T07:47:10Z) - Deep Robust Multilevel Semantic Cross-Modal Hashing [25.895586911858857]
Hashing based cross-modal retrieval has recently made significant progress.
But straightforward embedding data from different modalities into a joint Hamming space will inevitably produce false codes.
We present a novel Robust Multilevel Semantic Hashing (RMSH) for more accurate cross-modal retrieval.
arXiv Detail & Related papers (2020-02-07T10:08:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.