Distribution-Consistency-Guided Multi-modal Hashing
- URL: http://arxiv.org/abs/2412.11216v2
- Date: Thu, 19 Dec 2024 08:32:20 GMT
- Title: Distribution-Consistency-Guided Multi-modal Hashing
- Authors: Jin-Yu Liu, Xian-Ling Mao, Tian-Yi Che, Rong-Cheng Tu,
- Abstract summary: We propose a novel Distribution-Consistency-Guided Multi-modal Hashing (DCGMH) to enhance retrieval performance.
The proposed method first randomly initializes several category centers, which are used to compute the high-low distribution of similarity scores.
Extensive experiments on three widely used datasets demonstrate the superiority of the proposed method compared to state-of-the-art baselines.
- Score: 24.945074615208
- License:
- Abstract: Multi-modal hashing methods have gained popularity due to their fast speed and low storage requirements. Among them, the supervised methods demonstrate better performance by utilizing labels as supervisory signals compared with unsupervised methods. Currently, for almost all supervised multi-modal hashing methods, there is a hidden assumption that training sets have no noisy labels. However, labels are often annotated incorrectly due to manual labeling in real-world scenarios, which will greatly harm the retrieval performance. To address this issue, we first discover a significant distribution consistency pattern through experiments, i.e., the 1-0 distribution of the presence or absence of each category in the label is consistent with the high-low distribution of similarity scores of the hash codes relative to category centers. Then, inspired by this pattern, we propose a novel Distribution-Consistency-Guided Multi-modal Hashing (DCGMH), which aims to filter and reconstruct noisy labels to enhance retrieval performance. Specifically, the proposed method first randomly initializes several category centers, which are used to compute the high-low distribution of similarity scores; Noisy and clean labels are then separately filtered out via the discovered distribution consistency pattern to mitigate the impact of noisy labels; Subsequently, a correction strategy, which is indirectly designed via the distribution consistency pattern, is applied to the filtered noisy labels, correcting high-confidence ones while treating low-confidence ones as unlabeled for unsupervised learning, thereby further enhancing the model's performance. Extensive experiments on three widely used datasets demonstrate the superiority of the proposed method compared to state-of-the-art baselines in multi-modal retrieval tasks. The code is available at https://github.com/LiuJinyu1229/DCGMH.
Related papers
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Tackling Instance-Dependent Label Noise with Dynamic Distribution
Calibration [18.59803726676361]
Instance-dependent label noise is realistic but rather challenging, where the label-corruption process depends on instances directly.
It causes a severe distribution shift between the distributions of training and test data, which impairs the generalization of trained models.
In this paper, to address the distribution shift in learning with instance-dependent label noise, a dynamic distribution-calibration strategy is adopted.
arXiv Detail & Related papers (2022-10-11T03:50:52Z) - Combating Noisy Labels in Long-Tailed Image Classification [33.40963778043824]
This paper makes an early effort to tackle the image classification task with both long-tailed distribution and label noise.
Existing noise-robust learning methods cannot work in this scenario as it is challenging to differentiate noisy samples from clean samples of tail classes.
We propose a new learning paradigm based on matching between inferences on weak and strong data augmentations to screen out noisy samples.
arXiv Detail & Related papers (2022-09-01T07:31:03Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
We propose an end-to-end system that learns to separate proposals into labeled and unlabeled regions using Pseudo-positive mining.
While the labeled regions are processed as usual, self-supervised learning is used to process the unlabeled regions.
We conduct exhaustive experiments on five splits on the PASCAL-VOC and COCO datasets achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-01-12T18:57:04Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
We propose a novel deep hashing method for scalable multi-label image search.
A new rank-consistency objective is applied to align the similarity orders from two spaces.
A powerful loss function is designed to penalize the samples whose semantic similarity and hamming distance are mismatched.
arXiv Detail & Related papers (2021-02-02T13:46:58Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
We propose a new method named textbfComprehensive stextbfImilarity textbfMining and ctextbfOnsistency leartextbfNing (CIMON)
First, we use global refinement and similarity statistical distribution to obtain reliable and smooth guidance. Second, both semantic and contrastive consistency learning are introduced to derive both disturb-invariant and discriminative hash codes.
arXiv Detail & Related papers (2020-10-15T14:47:14Z) - Self-Supervised Bernoulli Autoencoders for Semi-Supervised Hashing [1.8899300124593648]
This paper investigates the robustness of hashing methods based on variational autoencoders to the lack of supervision.
We propose a novel supervision method in which the model uses its label distribution predictions to implement the pairwise objective.
Our experiments show that both methods can significantly increase the hash codes' quality.
arXiv Detail & Related papers (2020-07-17T07:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.