Ultrasound Image Classification using ACGAN with Small Training Dataset
- URL: http://arxiv.org/abs/2102.01539v1
- Date: Sun, 31 Jan 2021 11:11:24 GMT
- Title: Ultrasound Image Classification using ACGAN with Small Training Dataset
- Authors: Sudipan Saha and Nasrullah Sheikh
- Abstract summary: Training deep learning models requires large labeled datasets, which is often unavailable for ultrasound images.
We exploit Generative Adversarial Network (ACGAN) that combines the benefits of large data augmentation and transfer learning.
We conduct experiment on a dataset of breast ultrasound images that shows the effectiveness of the proposed approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: B-mode ultrasound imaging is a popular medical imaging technique. Like other
image processing tasks, deep learning has been used for analysis of B-mode
ultrasound images in the last few years. However, training deep learning models
requires large labeled datasets, which is often unavailable for ultrasound
images. The lack of large labeled data is a bottleneck for the use of deep
learning in ultrasound image analysis. To overcome this challenge, in this work
we exploit Auxiliary Classifier Generative Adversarial Network (ACGAN) that
combines the benefits of data augmentation and transfer learning in the same
framework. We conduct experiment on a dataset of breast ultrasound images that
shows the effectiveness of the proposed approach.
Related papers
- Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography [2.07180164747172]
We introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data.
The synthetic images are utilized to enhance various aspects of our development of the robot-assisted ultrasound scanning system.
arXiv Detail & Related papers (2024-06-03T10:53:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
We propose a method to generate large amounts of ultrasound images from other modalities and from arbitrary positions.
We present a novel simulation pipeline which uses segmentations from other modalities, an optimized data representation and GPU-accelerated Monte Carlo path tracing.
The proposed approach allows for fast and accurate patient-specific ultrasound image generation, and its usability for training networks for navigation-related tasks is demonstrated.
arXiv Detail & Related papers (2024-02-09T15:14:48Z) - FUSC: Fetal Ultrasound Semantic Clustering of Second Trimester Scans
Using Deep Self-supervised Learning [1.0819408603463427]
More than 140M fetuses are born yearly, resulting in numerous scans.
The availability of a large volume of fetal ultrasound scans presents the opportunity to train robust machine learning models.
This study presents an unsupervised approach for automatically clustering ultrasound images into a large range of fetal views.
arXiv Detail & Related papers (2023-10-19T09:11:23Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Weakly Supervised Context Encoder using DICOM metadata in Ultrasound
Imaging [7.370841471918351]
We leverage DICOM metadata from ultrasound images to help learn representations of the ultrasound image.
We demonstrate that the proposed method outperforms the non-metadata based approaches across different downstream tasks.
arXiv Detail & Related papers (2020-03-20T02:17:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.