論文の概要: Real-time detection of uncalibrated sensors using Neural Networks
- arxiv url: http://arxiv.org/abs/2102.01565v1
- Date: Tue, 2 Feb 2021 15:44:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 02:02:45.660695
- Title: Real-time detection of uncalibrated sensors using Neural Networks
- Title(参考訳): ニューラルネットワークを用いた無補間センサのリアルタイム検出
- Authors: Luis J. Mu\~noz-Molina, Ignacio Cazorla-Pi\~nar, Juan P.
Dominguez-Morales, Fernando Perez-Pe\~na
- Abstract要約: オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, sensors play a major role in several contexts like science,
industry and daily life which benefit of their use. However, the retrieved
information must be reliable. Anomalies in the behavior of sensors can give
rise to critical consequences such as ruining a scientific project or
jeopardizing the quality of the production in industrial production lines. One
of the more subtle kind of anomalies are uncalibrations. An uncalibration is
said to take place when the sensor is not adjusted or standardized by
calibration according to a ground truth value. In this work, an online
machine-learning based uncalibration detector for temperature, humidity and
pressure sensors was developed. This solution integrates an Artificial Neural
Network as main component which learns from the behavior of the sensors under
calibrated conditions. Then, after trained and deployed, it detects
uncalibrations once they take place. The obtained results show that the
proposed solution is able to detect uncalibrations for deviation values of 0.25
degrees, 1% RH and 1.5 Pa, respectively. This solution can be adapted to
different contexts by means of transfer learning, whose application allows for
the addition of new sensors, the deployment into new environments and the
retraining of the model with minimum amounts of data.
- Abstract(参考訳): 現在、センサは、科学、産業、日常生活など、その使用の恩恵を受けるいくつかのコンテキストにおいて重要な役割を果たす。
しかし、取得した情報は信頼できるものでなければならない。
センサの挙動の異常は、科学プロジェクトを台無しにしたり、工業生産ラインにおける生産の質を損なうなどの重大な結果をもたらす可能性がある。
より微妙な種類の異常の1つは不均衡である。
地上真理値に応じてキャリブレーションによりセンサが調整または標準化されていない場合、不校正が行われると言われる。
本研究では,オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
そして、トレーニングとデプロイの後、一度発生した未校正を検出する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
このソリューションは、新しいセンサーの追加、新しい環境へのデプロイ、最小限のデータ量でモデルのトレーニングを可能にするトランスファーラーニングによって異なるコンテキストに適応することができる。
関連論文リスト
- MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
我々は,マルチセンサSIDDデータセットという新しいベンチマークを導入する。これは,認知モデルのセンサ伝達性を評価するために設計された,最初の生ドメインデータセットである。
そこで本研究では,センサに不変な特徴を認知モデルで学習することのできるセンサ一貫性トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-18T13:32:59Z) - Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion [6.963971634605796]
本稿では,グラフ構造データに対する回帰処理に適した新しいunsupervised domain adapt(UDA)手法を提案する。
センサ間の関係をモデル化するために、時空間グラフニューラルネットワーク(STGNN)を組み込んだ。
弊社のアプローチでは、安価なIoTセンサが高価な参照センサから校正パラメータを学習できる。
論文 参考訳(メタデータ) (2024-11-11T12:20:57Z) - Deep convolutional neural networks for cyclic sensor data [0.0]
本研究では,センサによる条件モニタリングに焦点をあて,深層学習技術の応用について検討する。
本研究は,従来手法を用いたベースラインモデル,早期センサフュージョンを用いた単一CNNモデル,後期センサフュージョンを用いた2車線CNNモデル (2L-CNN) の3つのモデルの性能を比較した。
論文 参考訳(メタデータ) (2023-08-14T07:51:15Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
化学抵抗性ガス検知装置は製造中のセンサの変動の問題に悩まされている。
本研究では、SHAP(SHAP)のAI(XAI)法を用いて、センサデバイスにおけるセンサとセンサの変動を検出する新しい手法を提案する。
本手法は,GRU(Gated Recurrent Unit)モデルをトレーニングするために,人工的および現実的なオゾン濃度プロファイルを用いて試験する。
論文 参考訳(メタデータ) (2023-06-19T11:00:54Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
スマートマニュファクチャリングシステムの目標は、運用コストを削減し、ダウンタイムをなくすために、失敗を迅速に検出(または予測)することである。
これはしばしば、システムから取得したセンサーの日程内で異常を検出することに起因する。
スマートマニュファクチャリングアプリケーションドメインは、ある種の健全な技術的課題を提起します。
予測的障害分類が達成できることを示し、予測的メンテナンスの道を開く。
論文 参考訳(メタデータ) (2022-06-13T17:51:24Z) - Sensor Sampling Trade-Offs for Air Quality Monitoring With Low-Cost
Sensors [0.1957338076370071]
本研究では, 対流圏オゾン, 二酸化窒素, 一酸化窒素の低コストセンサの校正におけるデータサンプリング戦略の影響について述べる。
具体的には,センササブシステムのデューティサイクルを最小化するサンプリング戦略によって,データ品質を維持しながら消費電力を削減できることを示す。
論文 参考訳(メタデータ) (2021-12-14T11:05:55Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。