論文の概要: Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion
- arxiv url: http://arxiv.org/abs/2411.06917v1
- Date: Mon, 11 Nov 2024 12:20:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:29.078972
- Title: Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion
- Title(参考訳): 時空間空気質センサフュージョンのための非教師なし領域適応回帰
- Authors: Keivan Faghih Niresi, Ismail Nejjar, Olga Fink,
- Abstract要約: 本稿では,グラフ構造データに対する回帰処理に適した新しいunsupervised domain adapt(UDA)手法を提案する。
センサ間の関係をモデル化するために、時空間グラフニューラルネットワーク(STGNN)を組み込んだ。
弊社のアプローチでは、安価なIoTセンサが高価な参照センサから校正パラメータを学習できる。
- 参考スコア(独自算出の注目度): 6.963971634605796
- License:
- Abstract: The deployment of affordable Internet of Things (IoT) sensors for air pollution monitoring has increased in recent years due to their scalability and cost-effectiveness. However, accurately calibrating these sensors in uncontrolled environments remains a significant challenge. While expensive reference sensors can provide accurate ground truth data, they are often deployed on a limited scale due to high costs, leading to a scarcity of labeled data. In diverse urban environments, data distributions constantly shift due to varying factors such as traffic patterns, industrial activities, and weather conditions, which impact sensor readings. Consequently, traditional machine learning models -- despite their increasing deployment for environmental sensor calibration -- often struggle to provide reliable pollutant measurements across different locations due to domain shifts. To address these challenges, we propose a novel unsupervised domain adaptation (UDA) method specifically tailored for regression tasks on graph-structured data. Our approach leverages Graph Neural Networks (GNNs) to model the relationships between sensors. To effectively capture critical spatial-temporal interactions, we incorporate spatial-temporal graph neural networks (STGNNs), which extend GNNs by incorporating temporal dynamics. To handle the resulting larger embeddings, we propose a domain adaptation method using a closed-form solution inspired by the Tikhonov-regularized least-squares problem. This method leverages Cholesky decomposition and power iteration to align the subspaces between source and target domains. By aligning these subspaces, our approach allows low-cost IoT sensors to learn calibration parameters from expensive reference sensors. This facilitates reliable pollutant measurements in new locations without the need for additional costly equipment.
- Abstract(参考訳): 大気汚染モニタリングのための安価なIoT(Internet of Things)センサーの展開は、スケーラビリティと費用対効果のために近年増加している。
しかし、これらのセンサーを制御されていない環境で正確に調整することは、依然として重要な課題である。
高価な参照センサーは正確な地上の真実データを提供することができるが、高コストのため、しばしば限られたスケールで展開されるため、ラベル付きデータの不足につながる。
多様な都市環境では、センサの読み取りに影響を与える交通パターン、産業活動、気象条件など様々な要因により、データの分布は常に変化している。
その結果、従来の機械学習モデル — 環境センサーのキャリブレーションの展開が増えているにも関わらず — は、ドメインシフトによって異なる場所にわたって信頼できる汚染物質の測定を行うのに苦労することが多い。
これらの課題に対処するために,グラフ構造化データに対する回帰処理に適した新しいunsupervised domain adapt(UDA)手法を提案する。
我々のアプローチでは、センサー間の関係をモデル化するためにグラフニューラルネットワーク(GNN)を活用している。
空間的時間的相互作用を効果的に捉えるために、時間的ダイナミクスを取り入れてGNNを拡張する空間時空間グラフニューラルネットワーク(STGNN)を組み込んだ。
得られたより大きな埋め込みを扱うために、Tikhonov-regularized least-squares問題に着想を得た閉形式解を用いた領域適応法を提案する。
この方法は、Colesky分解と電力反復を利用して、ソースとターゲットドメイン間の部分空間を整列させる。
これらの部分空間を整列させることで、低コストのIoTセンサーが高価な参照センサから校正パラメータを学習することができる。
これにより、コストのかかる機器を必要とせずに、新しい場所での信頼できる汚染物質測定が容易になる。
関連論文リスト
- DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
本研究では,3次元物体の検出と局所化を確保するために,新しい拡散型ボックス精細化手法を提案する。
提案手法は,様々なドメイン適応設定下で評価し,その結果,異なるデータセット間での大幅な改善が示された。
論文 参考訳(メタデータ) (2024-05-25T03:14:55Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
本稿では,ネットワークのセンサ配置問題について検討する。
まず, 流れの保存仮定に基づいて問題を定式化し, 最適に固定されたセンサを配置することがNPハードであることを示す。
次に,大規模ネットワークにスケールするセンサ配置のための効率よく適応的なグリージーを提案する。
論文 参考訳(メタデータ) (2023-12-12T01:08:08Z) - Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air
Pollution Monitoring Systems [8.997596859735516]
本稿では,センサアレイからのデータを融合させることによりキャリブレーションのプロセスを改善する新しい手法を提案する。
我々は,IoT大気汚染監視プラットフォームにおけるセンサの校正精度を大幅に向上させる手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-09-08T12:04:47Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - Anomaly Detection through Transfer Learning in Agriculture and
Manufacturing IoT Systems [4.193524211159057]
本稿では, 農作物に設置したセンサから, 7種類のセンサからのデータと, 振動センサを用いた先進的な製造試験からのデータを分析する。
これら2つのアプリケーション領域において、予測的障害分類がいかに達成され、予測的メンテナンスの道が開かれたかを示す。
論文 参考訳(メタデータ) (2021-02-11T02:37:27Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
オンライン学習に基づく温度・湿度・圧力センサの非校正検出装置を開発した。
このソリューションはニューラルネットワークをメインコンポーネントとして統合し、校正条件下でのセンサーの動作から学習する。
その結果, 提案手法は, 偏差値0.25度, 1% RH, 1.5Paの偏差をそれぞれ検出できることがわかった。
論文 参考訳(メタデータ) (2021-02-02T15:44:39Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。