論文の概要: Towards Multi-agent Reinforcement Learning for Wireless Network Protocol
Synthesis
- arxiv url: http://arxiv.org/abs/2102.01611v1
- Date: Tue, 2 Feb 2021 17:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-03 23:08:24.136433
- Title: Towards Multi-agent Reinforcement Learning for Wireless Network Protocol
Synthesis
- Title(参考訳): 無線ネットワークプロトコル合成のためのマルチエージェント強化学習に向けて
- Authors: Hrishikesh Dutta and Subir Biswas
- Abstract要約: 本稿では,無線ネットワークのためのマルチエージェント強化学習に基づくメディアアクセスフレームワークを提案する。
アクセス問題はMarkov Decision Process (MDP) として定式化され、分散学習エージェントとして機能するネットワークノード毎に強化学習を用いて解決される。
- 参考スコア(独自算出の注目度): 2.6397379133308214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a multi-agent reinforcement learning based medium access
framework for wireless networks. The access problem is formulated as a Markov
Decision Process (MDP), and solved using reinforcement learning with every
network node acting as a distributed learning agent. The solution components
are developed step by step, starting from a single-node access scenario in
which a node agent incrementally learns to control MAC layer packet loads for
reining in self-collisions. The strategy is then scaled up for multi-node
fully-connected scenarios by using more elaborate reward structures. It also
demonstrates preliminary feasibility for more general partially connected
topologies. It is shown that by learning to adjust MAC layer transmission
probabilities, the protocol is not only able to attain theoretical maximum
throughput at an optimal load, but unlike classical approaches, it can also
retain that maximum throughput at higher loading conditions. Additionally, the
mechanism is agnostic to heterogeneous loading while preserving that feature.
It is also shown that access priorities of the protocol across nodes can be
parametrically adjusted. Finally, it is also shown that the online learning
feature of reinforcement learning is able to make the protocol adapt to
time-varying loading conditions.
- Abstract(参考訳): 本稿では,無線ネットワークのためのマルチエージェント強化学習に基づくメディアアクセスフレームワークを提案する。
アクセス問題はマルコフ決定プロセス(MDP)として定式化され、各ネットワークノードが分散学習エージェントとして機能する強化学習を用いて解決される。
ソリューションコンポーネントは、ノードエージェントが自己複製を制御するためにMAC層パケットの負荷を制御することを漸進的に学習する単一ノードアクセスシナリオから、ステップバイステップで開発される。
戦略は、より精巧な報酬構造を使用して、マルチノードの完全接続シナリオにスケールアップされます。
また、より一般的な部分連結トポロジーに対する予備的実現可能性を示す。
また,mac層伝送確率の調整を学べば,最適負荷時の理論的最大スループットが達成できるだけでなく,従来の手法と異なり,高い負荷条件でも最大スループットを維持できることを示した。
さらに、この機能を保ちながら、そのメカニズムは異種ロードに依存しない。
また、ノード間のプロトコルのアクセス優先度をパラメトリックに調整できることを示した。
最後に、強化学習のオンライン学習機能により、プロトコルを時間変化の負荷条件に適応させることができることを示す。
関連論文リスト
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z) - Reinforcement Learning for Protocol Synthesis in Resource-Constrained
Wireless Sensor and IoT Networks [1.462434043267217]
本稿では、メディアアクセス制御(MAC)におけるRLとMulti Armed Bandit(MAB)の使用について紹介する。
次に、ランダムアクセスとタイムスロットネットワークの両方において、メディアアクセスの特定の困難と制限に対処する、新しい学習ベースのプロトコル合成フレームワークを導入する。
ノードによる独立したプロトコル学習の能力により、システムはネットワークや交通条件の変化に対して堅牢で適応できる。
論文 参考訳(メタデータ) (2023-01-14T03:28:26Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Online Distributed Evolutionary Optimization of Time Division Multiple
Access Protocols [4.87717454493713]
我々は,環境駆動型分散ヒルクライミングアルゴリズムによって得られたネットワークの創発特性としてプロトコルを想定する。
エネルギー消費とプロトコル性能の観点から,分散ヒルクライミングがさまざまなトレードオフに達することを示す。
論文 参考訳(メタデータ) (2022-04-27T20:47:48Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
ダイナミックスペクトルアクセス(DSA)は、非効率的なスペクトル利用の問題を改善するための、有望なパラダイムである。
本稿では,一般的な認知無線ネットワークにおけるマルチユーザに対する分散DSA問題について検討する。
我々は、各認知ユーザに対する状態の部分的観測可能性に対処するために、DRQN(Deep Recurrent Q-network)を用いている。
論文 参考訳(メタデータ) (2021-06-17T06:52:21Z) - Medium Access using Distributed Reinforcement Learning for IoTs with
Low-Complexity Wireless Transceivers [2.6397379133308214]
本論文では,低複雑性無線トランシーバを用いたIoTネットワークにおけるMAC層無線プロトコルに使用できる分散強化学習(RL)ベースのフレームワークを提案する。
このフレームワークでは、アクセスプロトコルをまずMarkov Decision Processs (MDP) として定式化し、次にRLを用いて解決する。
本論文は,学習パラダイムの性能と,ノードが様々なネットワークダイナミクスに応答して,その最適伝達戦略をオンザフライで適応させる能力を示す。
論文 参考訳(メタデータ) (2021-04-29T17:57:43Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
オールオンス量子化ネットワークを効率的にトレーニングするための新しい共同知識伝達アプローチを開発しています。
具体的には、低精度の学生に知識を伝達するための高精度のエンクォータを選択するための適応的選択戦略を提案する。
知識を効果的に伝達するために,低精度の学生ネットワークのブロックを高精度の教師ネットワークのブロックにランダムに置き換える動的ブロックスワッピング法を開発した。
論文 参考訳(メタデータ) (2021-03-02T03:09:03Z) - Scalable Deep Reinforcement Learning for Routing and Spectrum Access in
Physical Layer [12.018165291620164]
無線アドホックネットワークにおける同時ルーティングとスペクトルアクセスのための新しい強化学習手法を提案する。
単一のエージェントは、各フローのフロンティアノードに沿って移動すると、すべてのルーティングとスペクトラムアクセスの決定を行います。
提案した深層強化学習戦略は,リンク間の相互干渉を考慮できる。
論文 参考訳(メタデータ) (2020-12-22T01:47:20Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。