Novel one-shot inner bounds for unassisted fully quantum channels via rate splitting
- URL: http://arxiv.org/abs/2102.01766v2
- Date: Mon, 25 Mar 2024 09:10:51 GMT
- Title: Novel one-shot inner bounds for unassisted fully quantum channels via rate splitting
- Authors: Sayantan Chakraborty, Aditya Nema, Pranab Sen,
- Abstract summary: We prove the first non-trivial one-shot inner bounds for sending quantum information over an entanglement over an unassisted two-sender quantum multiple access channel (QMAC) and an unassisted two-sender two-receiver quantum interference channel (QIC)
Previous works only studied the unassisted QMAC in the limit of many independent and identical uses of the channel also known as the iid limit, and did not study the unassisted QIC at all.
- Score: 4.642647756403863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove the first non-trivial one-shot inner bounds for sending quantum information over an entanglement unassisted two-sender quantum multiple access channel (QMAC) and an unassisted two-sender two-receiver quantum interference channel (QIC). Previous works only studied the unassisted QMAC in the limit of many independent and identical uses of the channel also known as the asymptotic iid limit, and did not study the unassisted QIC at all. We employ two techniques, rate splitting and successive cancellation}, in order to obtain our inner bound. Rate splitting was earlier used to obtain inner bounds, avoiding time sharing, for classical channels in the asymptotic iid setting. Our main technical contribution is to extend rate splitting from the classical asymptotic iid setting to the quantum one-shot setting. In the asymptotic iid limit our one-shot inner bound for QMAC approaches the rate region of Yard, Devetak and Hayden. For the QIC we get novel non-trivial rate regions in the asymptotic iid setting. All our results also extend to the case where limited entanglement assistance is provided, in both one-shot and asymptotic iid settings. The limited entanglement results for one-setting for both QMAC and QIC are new. For the QIC the limited entanglement results are new even in the asymptotic iid setting.
Related papers
- Two-stage Quantum Estimation and the Asymptotics of Quantum-enhanced
Transmittance Sensing [2.5449435573379757]
Quantum Cram'er-Rao bound is the ultimate limit of the mean squared error for unbiased estimation of an unknown parameter embedded in a quantum state.
We apply our results to the cost of quantum-enhanced transmittance sensing.
arXiv Detail & Related papers (2024-02-27T22:28:42Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Lower Bounds on Error Exponents via a New Quantum Decoder [14.304623719903972]
We show new lower bounds on the error exponent on the classical-quantum and the entanglement-assisted channel coding problem.
Our bounds are expressed in terms of measured (for the one-shot bounds) and sandwiched (for the bounds) channel R'enyi mutual information of order between 1/2 and 1.
arXiv Detail & Related papers (2023-10-13T11:22:49Z) - Quantum Bayesian Optimization [64.58749619145908]
We introduce the quantum-Gaussian process-upper confidence bound (Q-GP-UCB) algorithm.
It is the first BO algorithm able to achieve a regret upper bound of O(polylog T), which is significantly smaller than its regret lower bound of Omega(sqrt(T)) in the classical setting.
Thanks to our novel analysis of the confidence ellipsoid, our Q-GP-UCB with the linear kernel achieves a smaller regret than the quantum linear UCB algorithm.
arXiv Detail & Related papers (2023-10-09T03:10:42Z) - Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels [7.874708385247353]
We prove a one-shot quantum covering lemma in terms of smooth min-entropies.
We provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels.
arXiv Detail & Related papers (2023-06-21T17:53:22Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - One-shot inner bounds for sending private classical information over a
quantum MAC [0.0]
We provide the first inner bounds for sending private classical information over a quantum multiple access channel.
We do so by using three powerful information theoretic techniques: rate splitting, quantum simultaneous decoding for multiple access channels, and a novel smoothed distributed covering lemma for classical quantum channels.
arXiv Detail & Related papers (2021-05-13T06:31:27Z) - One-shot multi-sender decoupling and simultaneous decoding for the
quantum MAC [0.0]
We prove a novel one-shot multi-sender theorem generalising Dupuistrivial result.
An immediate application of our main result is to obtain a one-shot simultaneous decoder for sending quantum information over a k-sender entanglement unassisted quantum multiple access channel (QMAC)
Our work is the first one to obtain a non- simultaneous decoder for the QMAC with limited entanglement assistance in both one-shot and iid settings.
arXiv Detail & Related papers (2021-02-03T18:30:41Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.