Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels
- URL: http://arxiv.org/abs/2306.12416v3
- Date: Fri, 26 Apr 2024 16:05:12 GMT
- Title: Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels
- Authors: Touheed Anwar Atif, S. Sandeep Pradhan, Andreas Winter,
- Abstract summary: We prove a one-shot quantum covering lemma in terms of smooth min-entropies.
We provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels.
- Score: 7.874708385247353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum soft-covering problem for a given general quantum channel and one of its output states, which consists in finding the minimum rank of an input state needed to approximate the given channel output. We then prove a one-shot quantum covering lemma in terms of smooth min-entropies by leveraging decoupling techniques from quantum Shannon theory. This covering result is shown to be equivalent to a coding theorem for rate distortion under a posterior (reverse) channel distortion criterion by two of the present authors. Both one-shot results directly yield corollaries about the i.i.d. asymptotics, in terms of the coherent information of the channel. The power of our quantum covering lemma is demonstrated by two additional applications: first, we formulate a quantum channel resolvability problem, and provide one-shot as well as asymptotic upper and lower bounds. Secondly, we provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels, in particular separating for the first time the simultaneous identification capacity from the unrestricted one, proving a long-standing conjecture of the last author.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Joint State-Channel Decoupling and One-Shot Quantum Coding Theorem [16.05946478325466]
We propose a joint state-channel decoupling approach to obtain a one-shot error exponent bound without smoothing.
We establish a one-shot error exponent bound for quantum channel coding given by a sandwiched R'enyi coherent information.
arXiv Detail & Related papers (2024-09-23T15:59:16Z) - Quantum Channel Simulation in Fidelity is no more difficult than State Splitting [13.744740747451537]
We show that the quantum channel simulation can be directly achieved via quantum state splitting without using a technique known as the deFinetti reduction.
Using the bounds, we also recover the quantum reverse Shannon theorem in a much simpler way.
arXiv Detail & Related papers (2024-03-21T14:05:32Z) - Tight One-Shot Analysis for Convex Splitting with Applications in
Quantum Information Theory [23.18400586573435]
We establish a one-shot error exponent and a one-shot strong converse for convex splitting with trace distance as an error criterion.
This leads to new one-shot exponent results in various tasks such as communication over quantum wiretap channels, secret key distillation, one-way quantum message compression, quantum measurement simulation, and quantum channel coding with side information at the transmitter.
arXiv Detail & Related papers (2023-04-24T12:47:37Z) - Lossy Quantum Source Coding with a Global Error Criterion based on a
Posterior Reference Map [7.646713951724011]
We consider the lossy quantum source coding problem where the task is to compress a given quantum source below its von Neumann entropy.
Inspired by the duality connections between the rate-distortion and channel coding problems in the classical setting, we propose a new formulation for the problem.
arXiv Detail & Related papers (2023-02-01T17:44:40Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Reliable Simulation of Quantum Channels: the Error Exponent [5.8303977553652]
We study the error exponent of quantum channel simulation, which characterizes the optimal speed of exponential convergence.
We obtain an achievability bound for quantum channel simulation in the finite-blocklength setting.
arXiv Detail & Related papers (2021-12-08T18:55:54Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.