Do Not Forget to Attend to Uncertainty while Mitigating Catastrophic
Forgetting
- URL: http://arxiv.org/abs/2102.01906v1
- Date: Wed, 3 Feb 2021 06:54:52 GMT
- Title: Do Not Forget to Attend to Uncertainty while Mitigating Catastrophic
Forgetting
- Authors: Vinod K Kurmi, Badri N. Patro, Venkatesh K. Subramanian, Vinay P.
Namboodiri
- Abstract summary: One of the major limitations of deep learning models is that they face catastrophic forgetting in an incremental learning scenario.
We consider a Bayesian formulation to obtain the data and model uncertainties.
We also incorporate self-attention framework to address the incremental learning problem.
- Score: 29.196246255389664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the major limitations of deep learning models is that they face
catastrophic forgetting in an incremental learning scenario. There have been
several approaches proposed to tackle the problem of incremental learning. Most
of these methods are based on knowledge distillation and do not adequately
utilize the information provided by older task models, such as uncertainty
estimation in predictions. The predictive uncertainty provides the
distributional information can be applied to mitigate catastrophic forgetting
in a deep learning framework. In the proposed work, we consider a Bayesian
formulation to obtain the data and model uncertainties. We also incorporate
self-attention framework to address the incremental learning problem. We define
distillation losses in terms of aleatoric uncertainty and self-attention. In
the proposed work, we investigate different ablation analyses on these losses.
Furthermore, we are able to obtain better results in terms of accuracy on
standard benchmarks.
Related papers
- Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals.
We propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest.
arXiv Detail & Related papers (2024-02-21T19:09:53Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - Data Uncertainty without Prediction Models [0.8223798883838329]
We propose an uncertainty estimation method named a Distance-weighted Class Impurity without explicit use of prediction models.
We verified that the Distance-weighted Class Impurity works effectively regardless of prediction models.
arXiv Detail & Related papers (2022-04-25T13:26:06Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
Minimizing prediction uncertainty on unlabeled data is a key factor to achieve good performance in semi-supervised learning.
This paper proposes a dual mechanism, named ADaptive Sharpening (ADS), which first applies a soft-threshold to adaptively mask out determinate and negligible predictions.
ADS significantly improves the state-of-the-art SSL methods by making it a plug-in.
arXiv Detail & Related papers (2021-12-15T15:17:02Z) - Diffusion Tensor Estimation with Uncertainty Calibration [6.5085381751712506]
We propose a deep learning method to estimate the diffusion tensor and compute the estimation uncertainty.
Data-dependent uncertainty is computed directly by the network and learned via loss attenuation.
We show that the estimation uncertainties computed by the new method can highlight the model's biases, detect domain shift, and reflect the strength of noise in the measurements.
arXiv Detail & Related papers (2021-11-21T15:58:01Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Exploring Uncertainty in Deep Learning for Construction of Prediction
Intervals [27.569681578957645]
We explore the uncertainty in deep learning to construct prediction intervals.
We design a special loss function, which enables us to learn uncertainty without uncertainty label.
Our method correlates the construction of prediction intervals with the uncertainty estimation.
arXiv Detail & Related papers (2021-04-27T02:58:20Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.