Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests
- URL: http://arxiv.org/abs/2402.14080v1
- Date: Wed, 21 Feb 2024 19:09:53 GMT
- Title: Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests
- Authors: Daniel Nolte, Souparno Ghosh, Ranadip Pal
- Abstract summary: Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals.
We propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are being adopted and applied on various critical
decision-making tasks, yet they are trained to provide point predictions
without providing degrees of confidence. The trustworthiness of deep learning
models can be increased if paired with uncertainty estimations. Conformal
Prediction has emerged as a promising method to pair machine learning models
with prediction intervals, allowing for a view of the model's uncertainty.
However, popular uncertainty estimation methods for conformal prediction fail
to provide heteroskedastic intervals that are equally accurate for all samples.
In this paper, we propose a method to estimate the uncertainty of each sample
by calculating the variance obtained from a Deep Regression Forest. We show
that the deep regression forest variance improves the efficiency and coverage
of normalized inductive conformal prediction on a drug response prediction
task.
Related papers
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
In this paper, different uncertainty estimation methods are compared to forecast meteorological time series data.
Results show how each uncertainty estimation method performs on the forecasting task.
arXiv Detail & Related papers (2022-11-11T14:29:13Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Loss Estimators Improve Model Generalization [36.520569284970456]
We propose to train a loss estimator alongside the predictive model, using a contrastive training objective, to directly estimate the prediction uncertainties.
We show the impact of loss estimators on model generalization, in terms of both its fidelity on in-distribution data and its ability to detect out of distribution samples or new classes unseen during training.
arXiv Detail & Related papers (2021-03-05T16:35:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.