Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation
- URL: http://arxiv.org/abs/2102.02033v1
- Date: Wed, 3 Feb 2021 12:28:04 GMT
- Title: Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation
- Authors: Yuhang Ding, Xin Yu, Yi Yang
- Abstract summary: We develop a data augmentation method for one-shot brain magnetic resonance imaging (MRI) image segmentation.
Our method exploits only one labeled MRI image (named atlas) and a few unlabeled images.
Our method outperforms the state-of-the-art one-shot medical segmentation methods.
- Score: 40.41161371507547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing image segmentation networks mainly leverage large-scale labeled
datasets to attain high accuracy. However, labeling medical images is very
expensive since it requires sophisticated expert knowledge. Thus, it is more
desirable to employ only a few labeled data in pursuing high segmentation
performance. In this paper, we develop a data augmentation method for one-shot
brain magnetic resonance imaging (MRI) image segmentation which exploits only
one labeled MRI image (named atlas) and a few unlabeled images. In particular,
we propose to learn the probability distributions of deformations (including
shapes and intensities) of different unlabeled MRI images with respect to the
atlas via 3D variational autoencoders (VAEs). In this manner, our method is
able to exploit the learned distributions of image deformations to generate new
authentic brain MRI images, and the number of generated samples will be
sufficient to train a deep segmentation network. Furthermore, we introduce a
new standard segmentation benchmark to evaluate the generalization performance
of a segmentation network through a cross-dataset setting (collected from
different sources). Extensive experiments demonstrate that our method
outperforms the state-of-the-art one-shot medical segmentation methods. Our
code has been released at
https://github.com/dyh127/Modeling-the-Probabilistic-Distribution-of-Unlabeled-Data.
Related papers
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
An increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data.
We exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images.
We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures.
arXiv Detail & Related papers (2024-10-13T16:34:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Semi-Supervised Domain Generalization for Cardiac Magnetic Resonance
Image Segmentation with High Quality Pseudo Labels [8.283424744148258]
We present a domain generalization method for semi-supervised medical segmentation.
Our main goal is to improve the quality of pseudo labels under extreme MRI Analysis with various domains.
Our approach consistently generates accurate segmentation results of cardiac magnetic resonance images with different respiratory motions.
arXiv Detail & Related papers (2022-09-30T12:57:41Z) - Joint Modeling of Image and Label Statistics for Enhancing Model
Generalizability of Medical Image Segmentation [14.106339318764372]
We propose a deep learning-based Bayesian framework, which jointly models image and label statistics.
We develop a variational Bayesian framework to infer the posterior distributions of these variables, including the contour, the basis, and the label.
Results on the task of cross-sequence cardiac MRI segmentation show that our method set a new state of the art for model generalizability.
arXiv Detail & Related papers (2022-06-09T08:31:14Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
arXiv Detail & Related papers (2021-10-05T15:28:42Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.