Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation
- URL: http://arxiv.org/abs/2110.02117v1
- Date: Tue, 5 Oct 2021 15:28:42 GMT
- Title: Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation
- Authors: Devavrat Tomar, Behzad Bozorgtabar, Manana Lortkipanidze, Guillaume
Vray, Mohammad Saeed Rad, Jean-Philippe Thiran
- Abstract summary: In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
- Score: 10.634870214944055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In medical image segmentation, supervised deep networks' success comes at the
cost of requiring abundant labeled data. While asking domain experts to
annotate only one or a few of the cohort's images is feasible, annotating all
available images is impractical. This issue is further exacerbated when
pre-trained deep networks are exposed to a new image dataset from an unfamiliar
distribution. Using available open-source data for ad-hoc transfer learning or
hand-tuned techniques for data augmentation only provides suboptimal solutions.
Motivated by atlas-based segmentation, we propose a novel volumetric
self-supervised learning for data augmentation capable of synthesizing
volumetric image-segmentation pairs via learning transformations from a single
labeled atlas to the unlabeled data. Our work's central tenet benefits from a
combined view of one-shot generative learning and the proposed self-supervised
training strategy that cluster unlabeled volumetric images with similar styles
together. Unlike previous methods, our method does not require input volumes at
inference time to synthesize new images. Instead, it can generate diversified
volumetric image-segmentation pairs from a prior distribution given a single or
multi-site dataset. Augmented data generated by our method used to train the
segmentation network provide significant improvements over state-of-the-art
deep one-shot learning methods on the task of brain MRI segmentation. Ablation
studies further exemplified that the proposed appearance model and joint
training are crucial to synthesize realistic examples compared to existing
medical registration methods. The code, data, and models are available at
https://github.com/devavratTomar/SST.
Related papers
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
An increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data.
We exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images.
We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures.
arXiv Detail & Related papers (2024-10-13T16:34:46Z) - Distillation Learning Guided by Image Reconstruction for One-Shot Medical Image Segmentation [12.33442990188044]
One-shot medical image segmentation (MIS) methods often struggle with registration errors and low-quality synthetic images.
We introduce a novel one-shot MIS framework based on knowledge distillation.
It allows the network to directly'see' real images through a distillation process guided by image reconstruction.
arXiv Detail & Related papers (2024-08-07T08:17:34Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Half-Real Half-Fake Distillation for Class-Incremental Semantic
Segmentation [84.1985497426083]
convolutional neural networks are ill-equipped for incremental learning.
New classes are available but the initial training data is not retained.
We try to address this issue by "inverting" the trained segmentation network to synthesize input images starting from random noise.
arXiv Detail & Related papers (2021-04-02T03:47:16Z) - Modeling the Probabilistic Distribution of Unlabeled Data forOne-shot
Medical Image Segmentation [40.41161371507547]
We develop a data augmentation method for one-shot brain magnetic resonance imaging (MRI) image segmentation.
Our method exploits only one labeled MRI image (named atlas) and a few unlabeled images.
Our method outperforms the state-of-the-art one-shot medical segmentation methods.
arXiv Detail & Related papers (2021-02-03T12:28:04Z) - Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation [34.45302976822067]
Semi-supervised learning (SSL) based on generative methods has been proven to be effective in utilizing diverse image characteristics.
We propose a new data guided generative method for histopathology image segmentation by leveraging the unlabeled data distributions.
Our method is evaluated on glands and nuclei datasets.
arXiv Detail & Related papers (2020-12-17T02:54:19Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.