Wave-function engineering via conditional quantum teleportation with
non-Gaussian entanglement resource
- URL: http://arxiv.org/abs/2102.02359v1
- Date: Thu, 4 Feb 2021 01:31:11 GMT
- Title: Wave-function engineering via conditional quantum teleportation with
non-Gaussian entanglement resource
- Authors: Warit Asavanant, Kan Takase, Kosuke Fukui, Mamoru Endo, Jun-ichi
Yoshikawa, Akira Furusawa
- Abstract summary: We propose and analyze a setup to tailor the wave functions of the quantum states.
We can generate various classes of quantum states such as Schr"odinger cat states, four-component cat states, superpositions of Fock states, and cubic phase states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and analyze a setup to tailor the wave functions of the quantum
states. Our setup is based on the quantum teleportation circuit, but instead of
the usual two-mode squeezed state, two-mode non-Gaussian entangled state is
used. Using this setup, we can generate various classes of quantum states such
as Schr\"odinger cat states, four-component cat states, superpositions of Fock
states, and cubic phase states. These results demonstrate the versatility of
our system as a state generator and suggest that conditioning using homodyne
measurements is an important tool in the generations of the non-Gaussian states
in complementary to the photon number detection.
Related papers
- Teleportation of a qubit using exotic entangled coherent states [0.0]
We study the exotic Landau problem at the classical level where two conserved quantities are derived.
We form entangled coherent states which are Bell-like states labeled quasi-Bell states.
The effect of non-maximality of a quasi-Bell state based quantum channel is investigated in the context of a teleportation of a qubit.
arXiv Detail & Related papers (2024-04-03T12:03:38Z) - Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators [6.445506003176312]
Two-mode squeezed states are entangled states with bipartite quantum correlations in continuous-variable systems.
We experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers.
arXiv Detail & Related papers (2023-11-09T07:13:07Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Quantum state truncation using an optical parametric amplifier and a
beamsplitter [0.0]
We present a scheme of quantum state truncation in the Fock basis (quantum scissors)
A truncated state is generated after performing photodetections in the global state.
We quantify the nonclassicality degree of the generated states using the Wigner-Yanase information measure.
arXiv Detail & Related papers (2021-09-24T15:21:12Z) - Non-Gaussian Quantum States and Where to Find Them [0.0]
We show how non-Gaussian states can be created by performing measurements on a subset of modes in a Gaussian state.
We demonstrate that Wigner negativity is a requirement to violate Bell inequalities and to achieve a quantum computational advantage.
arXiv Detail & Related papers (2021-04-26T13:59:41Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.