論文の概要: From a Point Cloud to a Simulation Model: Bayesian Segmentation and
Entropy based Uncertainty Estimation for 3D Modelling
- arxiv url: http://arxiv.org/abs/2102.02488v1
- Date: Thu, 4 Feb 2021 08:59:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 16:42:56.194124
- Title: From a Point Cloud to a Simulation Model: Bayesian Segmentation and
Entropy based Uncertainty Estimation for 3D Modelling
- Title(参考訳): 点雲からシミュレーションモデルへ:3次元モデリングのためのベイズ分節とエントロピーに基づく不確かさ推定
- Authors: Christina Petschnigg, Markus Spitzner, Lucas Weitzendorf and J\"urgen
Pilz
- Abstract要約: ブラウンフィールド計画の場合、既存のデータは時代遅れで、特に2Dで計画されていた古い植物には不完全であることが多い。
現在の環境モデルは、既存のデータに基づいて直接生成することはできないし、そのような工場モデルを構築する方法に関する全体論的なアプローチはほとんど存在しない。
本研究では,大規模屋内環境のデジタル化から始まり,静的環境やシミュレーションモデルの生成で終わる方法論的ワークフローを詳述する。
- 参考スコア(独自算出の注目度): 0.6882042556551611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 3D modelling of indoor environments and the generation of process
simulations play an important role in factory and assembly planning. In
brownfield planning cases existing data are often outdated and incomplete
especially for older plants, which were mostly planned in 2D. Thus, current
environment models cannot be generated directly on the basis of existing data
and a holistic approach on how to build such a factory model in a highly
automated fashion is mostly non-existent. Major steps in generating an
environment model in a production plant include data collection and
pre-processing, object identification as well as pose estimation. In this work,
we elaborate a methodical workflow, which starts with the digitalization of
large-scale indoor environments and ends with the generation of a static
environment or simulation model. The object identification step is realized
using a Bayesian neural network capable of point cloud segmentation. We
elaborate how the information on network uncertainty generated by a Bayesian
segmentation framework can be used in order to build up a more accurate
environment model. The steps of data collection and point cloud segmentation as
well as the resulting model accuracy are evaluated on a real-world data set
collected at the assembly line of a large-scale automotive production plant.
The segmentation network is further evaluated on the publicly available
Stanford Large-Scale 3D Indoor Spaces data set. The Bayesian segmentation
network clearly surpasses the performance of the frequentist baseline and
allows us to increase the accuracy of the model placement in a simulation scene
considerably.
- Abstract(参考訳): 室内環境の3Dモデリングとプロセスシミュレーションの生成は、工場および組立計画において重要な役割を果たします。
ブラウンフィールド計画では、既存のデータはしばしば時代遅れで、特に2dで計画された古い植物では不完全である。
したがって、現在の環境モデルは既存のデータに基づいて直接生成することができず、そのような工場モデルを高度に自動化した方法で構築する方法に関する全体的なアプローチはほとんど存在しない。
生産プラントで環境モデルを生成する主なステップは、データ収集と事前処理、オブジェクト識別、およびポーズ推定である。
本稿では,大規模室内環境のディジタル化から始まり,静的環境やシミュレーションモデルの生成に至る,方法論的ワークフローを詳述する。
オブジェクト識別ステップは、ポイントクラウドセグメンテーションが可能なベイズニューラルネットワークを使用して実現される。
ベイジアンセグメンテーションフレームワークによって生成されたネットワークの不確実性に関する情報を用いて、より正確な環境モデルを構築する方法について詳しく述べる。
大規模自動車生産プラントの組立ラインで収集された実世界のデータセットにおいて、データ収集とポイントクラウドセグメンテーションのステップと結果のモデル精度を評価する。
セグメンテーションネットワークは、Stanford Large-Scale 3D Indoor Spacesデータセットでさらに評価されている。
ベイジアンセグメンテーションネットワークは、頻繁なベースラインの性能を明らかに上回り、シミュレーションシーンにおけるモデル配置の精度を大幅に向上させることができる。
関連論文リスト
- BelHouse3D: A Benchmark Dataset for Assessing Occlusion Robustness in 3D Point Cloud Semantic Segmentation [2.446672595462589]
本稿では,3次元屋内シーンセマンティックセマンティックセグメンテーション用に設計された,新たな合成点クラウドデータセットであるBelHouse3Dデータセットを紹介する。
このデータセットは、ベルギーの32軒の家の実世界の参照を使って構築されており、合成データが実世界の状況と密接に一致していることを保証する。
論文 参考訳(メタデータ) (2024-11-20T12:09:43Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models [0.0]
この研究はIntel半導体製造工場のベンチマークモデルに基づいている。
時系列データセットは離散時間軌道を用いて構築される。
データセットは、機械学習コミュニティで行動分析に利用することもできる。
論文 参考訳(メタデータ) (2024-08-17T23:05:47Z) - Mixed Diffusion for 3D Indoor Scene Synthesis [55.94569112629208]
混合離散連続拡散モデルアーキテクチャであるMiDiffusionを提案する。
シーンレイアウトを2次元のフロアプランとオブジェクトの集合で表現し、それぞれがそのカテゴリ、場所、サイズ、方向で定義する。
実験により,MiDiffusionは床条件下での3次元シーン合成において,最先端の自己回帰モデルや拡散モデルよりもかなり優れていることが示された。
論文 参考訳(メタデータ) (2024-05-31T17:54:52Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - HaDR: Applying Domain Randomization for Generating Synthetic Multimodal
Dataset for Hand Instance Segmentation in Cluttered Industrial Environments [0.0]
本研究では、ドメインランダム化を用いて、マルチモーダルインスタンスセグメンテーションモデルのトレーニングのための合成RGB-Dデータセットを生成する。
提案手法により,既存の最先端データセットでトレーニングしたモデルよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-04-12T13:02:08Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - Uncertainty Estimation in Deep Neural Networks for Point Cloud
Segmentation in Factory Planning [0.9137554315375922]
点群分割のための完全ベイズ型および近似ベイズ型ニューラルネットワークを提案する。
これらのネットワークにおける不確実性を推定する方法の違いが生の3次元点雲のセグメンテーション結果に与える影響を分析する。
本研究で提案する手法は,より正確なセグメンテーション結果をもたらし,不確実性情報の導入は,特に安全上重要な応用に適用できる。
論文 参考訳(メタデータ) (2020-12-13T11:18:52Z) - Generating synthetic photogrammetric data for training deep learning
based 3D point cloud segmentation models [0.0]
I/ITSEC 2019で著者らは、3Dフォトグラムのポイントクラウド/ミームをセグメント化し、オブジェクト情報を抽出する、完全に自動化されたワークフローを発表した。
最終的な目標は、現実的な仮想環境を作成し、シミュレーションに必要な情報を提供することである。
論文 参考訳(メタデータ) (2020-08-21T18:50:42Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。