論文の概要: Lookup subnet based Spatial Graph Convolutional neural Network
- arxiv url: http://arxiv.org/abs/2102.02588v1
- Date: Thu, 4 Feb 2021 13:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 16:20:04.073046
- Title: Lookup subnet based Spatial Graph Convolutional neural Network
- Title(参考訳): 探索サブネットに基づく空間グラフ畳み込みニューラルネットワーク
- Authors: Jingzhao Hu, Xiaoqi Zhang, Qiaomei Jia, Chen Wang, Qirong Bu, Jun Feng
- Abstract要約: 本研究では,CNNを非ユークリッド領域に自然に一般化するクロス相関グラフ畳み込み法を提案する。
提案手法は,3つの確立されたグラフベンチマークにおいて,最先端の実績を達成あるいは一致させた。
- 参考スコア(独自算出の注目度): 3.119764474774276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks(CNNs) has achieved remarkable performance
breakthrough in Euclidean structure data. Recently, aggregation-transformation
based Graph Neural networks(GNNs) gradually produce a powerful performance on
non-Euclidean data. In this paper, we propose a cross-correlation based graph
convolution method allowing to naturally generalize CNNs to non-Euclidean
domains and inherit the excellent natures of CNNs, such as local filters,
parameter sharing, flexible receptive field, etc. Meanwhile, it leverages
dynamically generated convolution kernel and cross-correlation operators to
address the shortcomings of prior methods based on aggregation-transformation
or their approximations. Our method has achieved or matched popular
state-of-the-art results across three established graph benchmarks: the Cora,
Citeseer, and Pubmed citation network datasets.
- Abstract(参考訳): Convolutional Neural Networks(CNNs)は、ユークリッド構造データにおける顕著なパフォーマンスブレークスルーを達成しました。
近年,アグリゲーション変換に基づくグラフニューラルネットワーク(GNN)は,非ユークリッドデータ上での強力な性能を徐々に生み出している。
本稿では,CNNを非ユークリッド領域に自然に一般化し,局所フィルタやパラメータ共有,フレキシブルな受容場など,CNNの優れた性質を継承するクロス相関グラフ畳み込み手法を提案する。
一方、動的に生成された畳み込みカーネルとクロスコレーション演算子を利用して、集約変換または近似に基づく先行メソッドの欠点に対処する。
本手法は,3つのグラフベンチマーク(cora,citeseer,pubmed citation network dataset)において,最先端の結果を達成あるいは一致させた。
関連論文リスト
- Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - High-Order Pooling for Graph Neural Networks with Tensor Decomposition [23.244580796300166]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ構造化データモデリングの有効性と柔軟性から、注目を集めている。
本稿では,高次非線形ノード相互作用をモデル化するためにテンソル分解に依存する高表現性GNNアーキテクチャであるGraphized Neural Network (tGNN)を提案する。
論文 参考訳(メタデータ) (2022-05-24T01:12:54Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Improving the Training of Graph Neural Networks with Consistency
Regularization [9.239633445211574]
グラフニューラルネットワークの性能向上には,一貫性の正則化が有効かを検討する。
整合正則化法を2つの最先端GNNと組み合わせ、ogbn-productsデータセット上で実験を行う。
一貫性の正則化により、ogbn-productsデータセットでは、最先端のGNNのパフォーマンスが0.3%向上する。
論文 参考訳(メタデータ) (2021-12-08T14:51:30Z) - Adaptive Filters in Graph Convolutional Neural Networks [0.0]
グラフニューラルネットワーク(GNN)は,グラフ構造化データ処理の可能性から注目されている。
本稿では,グラフ上で空間畳み込みを行う手法を提案する入力に対して,ConvGNNの振る舞いを適応させる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-21T14:36:39Z) - Enhance Information Propagation for Graph Neural Network by
Heterogeneous Aggregations [7.3136594018091134]
グラフニューラルネットワークは、ディープラーニングの成功の継続として出現している。
ヘテロジニアスアグリゲーションを組み合わせることで,GNN層間の情報伝達を促進することを提案する。
我々は,多くのグラフ分類ベンチマークにおいて,HAG-Netの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2021-02-08T08:57:56Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。