論文の概要: Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph
- arxiv url: http://arxiv.org/abs/2209.11414v1
- Date: Fri, 23 Sep 2022 05:24:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 16:57:44.605540
- Title: Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph
- Title(参考訳): 不均一グラフ処理のための関係埋め込み型グラフニューラルネットワーク
- Authors: Junfu Wang, Yuanfang Guo, Liang Yang, Yunhong Wang
- Abstract要約: 我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
- 参考スコア(独自算出の注目度): 58.99478502486377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graph learning has drawn significant attentions in recent
years, due to the success of graph neural networks (GNNs) and the broad
applications of heterogeneous information networks. Various heterogeneous graph
neural networks have been proposed to generalize GNNs for processing the
heterogeneous graphs. Unfortunately, these approaches model the heterogeneity
via various complicated modules. This paper aims to propose a simple yet
efficient framework to make the homogeneous GNNs have adequate ability to
handle heterogeneous graphs. Specifically, we propose Relation Embedding based
Graph Neural Networks (RE-GNNs), which employ only one parameter per relation
to embed the importance of edge type relations and self-loop connections. To
optimize these relation embeddings and the other parameters simultaneously, a
gradient scaling factor is proposed to constrain the embeddings to converge to
suitable values. Besides, we theoretically demonstrate that our RE-GNNs have
more expressive power than the meta-path based heterogeneous GNNs. Extensive
experiments on the node classification tasks validate the effectiveness of our
proposed method.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の成功と、異種情報ネットワークの幅広い応用により、近年、異種グラフ学習が注目されている。
異種グラフ処理のためのGNNを一般化するために、様々な異種グラフニューラルネットワークが提案されている。
残念ながら、これらのアプローチは様々な複雑な加群を通して不均一性をモデル化する。
本稿では、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を組み込むために、関係ごとに1つのパラメータのみを用いる関係埋め込み型グラフニューラルネットワーク(re-gnns)を提案する。
これらの関係埋め込みと他のパラメータを同時に最適化するために、埋め込みを適切な値に収束させるために勾配スケーリング係数を提案する。
さらに,我々のRE-GNNはメタパスベースヘテロジニアスGNNよりも表現力が高いことを理論的に実証した。
ノード分類タスクに関する広範な実験により,提案手法の有効性が検証された。
関連論文リスト
- BHGNN-RT: Network embedding for directed heterogeneous graphs [8.7024326813104]
本稿では,BHGNN-RTを用いた双方向ヘテロジニアスグラフニューラルネットワークの組込み手法を提案する。
BHGNN-RTの有効性と有効性を検証するために, 各種データセットの広範囲な実験を行った。
BHGNN-RTは、ノード分類と教師なしクラスタリングタスクの両方においてベンチマーク手法よりも優れた、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-24T10:56:09Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
本稿では,効率的なグラフ表現学習のためのSNNに基づく深層生成手法,すなわちSpking Variational Graph Auto-Encoders (S-VGAE)を提案する。
我々は,複数のベンチマークグラフデータセット上でリンク予測実験を行い,この結果から,グラフ表現学習における他のANNやSNNに匹敵する性能で,より少ないエネルギーを消費することを示した。
論文 参考訳(メタデータ) (2022-10-24T12:54:41Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph
Neural Networks [25.59092732148598]
不均一グラフニューラルネットワーク(GNN)は、半教師付き学習環境においてノード分類タスクにおいて高い性能を達成する。
本稿では、新しい関係認識エネルギー関数を導出する最適化ステップから層を導出する異種GNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-22T13:48:08Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Meta-path Free Semi-supervised Learning for Heterogeneous Networks [16.641434334366227]
グラフニューラルネットワーク(GNN)はグラフの表現学習に広く使われており、ノード分類などのタスクにおいて優れたパフォーマンスを実現している。
本稿では,メタパスを除く異種グラフに対して,単純かつ効率的なグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-18T06:01:58Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。