論文の概要: Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning
- arxiv url: http://arxiv.org/abs/2102.03127v1
- Date: Fri, 5 Feb 2021 12:08:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 12:59:18.826487
- Title: Experience-Based Heuristic Search: Robust Motion Planning with Deep
Q-Learning
- Title(参考訳): 経験に基づくヒューリスティック検索 : 深層Q-Learningによるロバストモーション計画
- Authors: Julian Bernhard, Robert Gieselmann, Klemens Esterle and Alois Knoll
- Abstract要約: 本稿では,Deep Q-Networkの形式でのエクスペリエンスを,探索アルゴリズムの最適ポリシとして統合する方法について述べる。
本手法は、自動運転車分野における強化学習に基づく計画の適用性について、さらなる研究を奨励する可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interaction-aware planning for autonomous driving requires an exploration of
a combinatorial solution space when using conventional search- or
optimization-based motion planners. With Deep Reinforcement Learning, optimal
driving strategies for such problems can be derived also for higher-dimensional
problems. However, these methods guarantee optimality of the resulting policy
only in a statistical sense, which impedes their usage in safety critical
systems, such as autonomous vehicles. Thus, we propose the
Experience-Based-Heuristic-Search algorithm, which overcomes the statistical
failure rate of a Deep-reinforcement-learning-based planner and still benefits
computationally from the pre-learned optimal policy. Specifically, we show how
experiences in the form of a Deep Q-Network can be integrated as heuristic into
a heuristic search algorithm. We benchmark our algorithm in the field of path
planning in semi-structured valet parking scenarios. There, we analyze the
accuracy of such estimates and demonstrate the computational advantages and
robustness of our method. Our method may encourage further investigation of the
applicability of reinforcement-learning-based planning in the field of
self-driving vehicles.
- Abstract(参考訳): 自律運転のための対話型計画には、従来の探索型または最適化型モーションプランナーを使用する場合、組合せ型ソリューション空間の探索が必要である。
深層強化学習(Deep Reinforcement Learning)では,高次元問題にも最適な運転戦略が導出できる。
しかし、これらの方法は、結果のポリシーの最適性を統計的にのみ保証し、自動運転車などの安全クリティカルなシステムの使用を妨げます。
そこで我々は,深層強化学習に基づくプランナの統計的失敗率を克服し,事前学習した最適ポリシーから計算的に恩恵を受ける経験ベースヒューリスティック探索アルゴリズムを提案する。
具体的には、Deep Q-Networkの形式での経験をヒューリスティックな検索アルゴリズムに統合する方法について述べる。
半構造化valet駐車シナリオにおける経路計画の分野でのアルゴリズムのベンチマークを行った。
そこで、これらの推定の精度を分析し、計算上の利点と手法の堅牢性を実証する。
本手法は、自動運転分野における強化学習型計画の適用可能性のさらなる検討を促す可能性がある。
関連論文リスト
- Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
本研究では,高度行動計画のための訓練された深層強化学習ポリシーを用いる方法を提案する。
私たちの知る限りでは、この研究は、この方法で深層強化学習を適用した最初のものである。
論文 参考訳(メタデータ) (2023-04-17T13:49:55Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Model-based Decision Making with Imagination for Autonomous Parking [50.41076449007115]
提案アルゴリズムは,駐車前に結果を予測するための想像モデル,高速探索ランダムツリー(RRT)の改良,経路平滑化モジュールの3つの部分から構成される。
われわれのアルゴリズムは、実際のキネマティックな車両モデルに基づいており、実際の自動運転車にアルゴリズムを適用するのにより適している。
アルゴリズムの有効性を評価するため,3つの異なる駐車シナリオにおいて,従来のRTとアルゴリズムを比較した。
論文 参考訳(メタデータ) (2021-08-25T18:24:34Z) - Learning off-road maneuver plans for autonomous vehicles [0.0]
この論文では、オフロード環境での自動運転車のオンライン計画とスケジューリングに機械学習アルゴリズムがもたらすメリットを探求する。
異なる計画立案者を支援するための学習ベースを提示する。
同期操作を実行するための戦略を合成するために,新しいタイプのスケジューリング制御性と学習支援アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-02T16:27:59Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
アイドルヘイリングプラットフォーム上での現実世界の車両の深層強化学習と意思決定時間計画に基づく新しい実用的枠組みを提示する。
本手法は,重み付きバッチ学習アルゴリズムを用いて乗車時の状態値関数を学習する。
配車シミュレーション環境におけるベースラインでアルゴリズムをベンチマークし、収益効率の向上における優位性を実証します。
論文 参考訳(メタデータ) (2021-03-08T05:34:05Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
適応型安全なパッドディングは、学習プロセス中の安全性を確保しつつ、RL(Reinforcement Learning)に最適な制御ポリシーの合成を強制する。
理論的な保証は、合成されたポリシーの最適性と学習アルゴリズムの収束について利用できる。
論文 参考訳(メタデータ) (2020-02-26T00:01:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。