論文の概要: Integer Programming for Causal Structure Learning in the Presence of
Latent Variables
- arxiv url: http://arxiv.org/abs/2102.03129v1
- Date: Fri, 5 Feb 2021 12:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-08 12:54:19.636857
- Title: Integer Programming for Causal Structure Learning in the Presence of
Latent Variables
- Title(参考訳): 潜在変数存在下での因果構造学習のための整数プログラミング
- Authors: Rui Chen, Sanjeeb Dash, Tian Gao
- Abstract要約: 本稿では,整数プログラミング(IP)の定式化を解き,連続変数の集合に対してスコア最大化祖先ADMGを返却する,新しい正確なスコアベース手法を提案する。
特に、DAG学習問題に対する最先端IPモデルを一般化し、有効な不等式の新しいクラスを導出し、IPベースのADMG学習モデルを形式化する。
- 参考スコア(独自算出の注目度): 28.893119229428713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of finding an ancestral acyclic directed mixed graph (ADMG) that
represents the causal relationships between a set of variables is an important
area of research for causal inference. However, most of existing score-based
structure learning methods focus on learning the directed acyclic graph (DAG)
without latent variables. A number of score-based methods have recently been
proposed for the ADMG learning, yet they are heuristic in nature and do not
guarantee an optimal solution. We propose a novel exact score-based method that
solves an integer programming (IP) formulation and returns a score-maximizing
ancestral ADMG for a set of continuous variables. In particular, we generalize
the state-of-the-art IP model for DAG learning problems and derive new classes
of valid inequalities to formalize the IP-based ADMG learning model.
Empirically our model can be solved efficiently for medium-sized problems and
achieves better accuracy than state-of-the-art score-based methods as well as
benchmark constraint-based methods.
- Abstract(参考訳): 変数の集合間の因果関係を表す先祖非周期的有向混合グラフ(ADMG)を見つけることの問題は因果推論のための重要な研究領域である。
しかし,既存のスコアベース構造学習手法の多くは,遅延変数を伴わない有向非巡回グラフ(DAG)の学習に重点を置いている。
近年、ADMG学習にいくつかのスコアベースの手法が提案されているが、本質的にはヒューリスティックであり、最適解を保証していない。
本論文では,整数プログラミング (IP) の定式化を解き,連続変数の集合に対して最大化先祖 ADMG を返す,新たな完全スコアに基づく手法を提案する。
特に,dag学習問題に対する最先端ipモデルを一般化し,ipベースadmg学習モデルを定式化するための有効な不等式の新しいクラスを導出する。
実験によって,我々のモデルは中規模の問題に対して効率的に解け,最新のスコアベース手法やベンチマーク制約ベースの手法よりも精度がよい。
関連論文リスト
- DIVE: Subgraph Disagreement for Graph Out-of-Distribution Generalization [44.291382840373]
本稿では,グラフ機械学習におけるアウト・オブ・ディストリビューションの一般化の課題に対処する。
従来のグラフ学習アルゴリズムは、この仮定が失敗する現実世界のシナリオで失敗する。
この準最適性能に寄与する主な要因は、ニューラルネットワークの本質的な単純さバイアスである。
論文 参考訳(メタデータ) (2024-08-08T12:08:55Z) - Scalable Structure Learning for Sparse Context-Specific Systems [0.0]
数百の変数にスケールする文脈特化モデルを学習するためのアルゴリズムを提案する。
本手法は, 合成データと実世界の実例でよく動作することを示す。
論文 参考訳(メタデータ) (2024-02-12T16:28:52Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
分散制約最適化問題(DCOP)は、最適化問題の重要なサブクラスである。
本稿では,DCOPのための新しい非巡回グラフスキーマ表現を提案し,グラフ表現を組み込むためにグラフ注意ネットワーク(GAT)を利用する。
我々のモデルであるGAT-PCMは、幅広いDCOPアルゴリズムを向上するために、オフラインで最適なラベル付きデータで事前訓練される。
論文 参考訳(メタデータ) (2021-12-08T09:24:10Z) - Joint Stochastic Approximation and Its Application to Learning Discrete
Latent Variable Models [19.07718284287928]
推定モデルに対する信頼度勾配を得るのが困難であることや、間接的にターゲットのログを最適化することの欠点を優雅に解決できることが示される。
本稿では,対象の対数類似度を直接最大化し,後部モデルと推論モデルとの包摂的ばらつきを同時に最小化することを提案する。
結果の学習アルゴリズムは、ジョイントSA(JSA)と呼ばれる。
論文 参考訳(メタデータ) (2020-05-28T13:50:08Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。