論文の概要: Scalable Structure Learning for Sparse Context-Specific Systems
- arxiv url: http://arxiv.org/abs/2402.07762v2
- Date: Wed, 16 Oct 2024 13:42:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:39:25.117823
- Title: Scalable Structure Learning for Sparse Context-Specific Systems
- Title(参考訳): Sparse Context-Specific システムのためのスケーラブルな構造学習
- Authors: Felix Leopoldo Rios, Alex Markham, Liam Solus,
- Abstract要約: 数百の変数にスケールする文脈特化モデルを学習するためのアルゴリズムを提案する。
本手法は, 合成データと実世界の実例でよく動作することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Several approaches to graphically representing context-specific relations among jointly distributed categorical variables have been proposed, along with structure learning algorithms. While existing optimization-based methods have limited scalability due to the large number of context-specific models, the constraint-based methods are more prone to error than even constraint-based directed acyclic graph learning algorithms since more relations must be tested. We present an algorithm for learning context-specific models that scales to hundreds of variables. Scalable learning is achieved through a combination of an order-based Markov chain Monte-Carlo search and a novel, context-specific sparsity assumption that is analogous to those typically invoked for directed acyclic graphical models. Unlike previous Markov chain Monte-Carlo search methods, our Markov chain is guaranteed to have the true posterior of the variable orderings as the stationary distribution. To implement the method, we solve a first case of an open problem recently posed by Alon and Balogh. Future work solving increasingly general instances of this problem would allow our methods to learn increasingly dense models. The method is shown to perform well on synthetic data and real world examples, in terms of both accuracy and scalability.
- Abstract(参考訳): 共分散分類変数間の文脈特化関係を図式的に表現するためのいくつかの手法が,構造学習アルゴリズムとともに提案されている。
既存の最適化に基づく手法は、多くのコンテキスト特化モデルによりスケーラビリティが制限されているが、制約ベースの手法は、より関係性をテストする必要があるため、制約ベースの有向非巡回グラフ学習アルゴリズムよりもエラーを起こしやすい。
数百の変数にスケールする文脈特化モデルを学習するためのアルゴリズムを提案する。
スケーラブルな学習は、秩序に基づくマルコフ連鎖モンテカルロ探索と、有向非巡回的グラフィカルモデルのために一般的に呼び出されるものと類似した、新しい文脈固有の空間性仮定の組み合わせによって達成される。
従来のマルコフ連鎖モンテカルロ探索法とは異なり、マルコフ連鎖は定常分布として変数順序の真の後部を持つことが保証されている。
この方法を実装するために,Alon と Balogh が最近提案した開問題の最初のケースを解く。
今後、この問題の一般的な例を解くことで、より密集したモデルを学習できるようになるでしょう。
この手法は, 精度とスケーラビリティの両方の観点から, 合成データと実世界の実例で良好に動作することを示す。
関連論文リスト
- Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
ラプラシア正規化成層モデル(Laplacian regularized Stratified Model、LRSM)は、サブプロブレムの明示的または暗黙的なネットワーク構造を利用するモデルである。
本稿では,LRSMにおけるグラフ重みの重要性と感度を示し,その感度が任意に大きいことを示す。
本稿では,1つの最適化問題を解くことで,モデルパラメータを適合させながらグラフを共同学習する汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T06:06:29Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - A Unified Analysis of Dynamic Interactive Learning [5.474944738795308]
Emamjomeh-Zadeh氏らによる以前の研究は、非静的なユーザの好みをモデル化する手段として、インタラクティブな学習のダイナミクスを導入しました。
私たちは、[Emamjomeh-Zadeh et al., 2020]で分析されたモデルの両方をキャプチャするフレームワークを提供します。
また,学習者が各ラウンドのフィードバックに従う,効率的なアルゴリズムについても検討する。
論文 参考訳(メタデータ) (2022-04-14T16:03:37Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
D$次元データポイントの分布から主グラフを学習するために,Mixture Modelsの正規化バージョンを提案する。
モデルのパラメータは期待最大化手順によって反復的に推定される。
論文 参考訳(メタデータ) (2021-06-16T18:00:02Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
本稿では,分離可能な置換の辺りを正確に推定する効率的な動的プログラミングアルゴリズムを提案する。
結果のSeq2seqモデルは、合成問題やNLPタスクの標準モデルよりも体系的な一般化が優れている。
論文 参考訳(メタデータ) (2021-06-06T21:53:54Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Integer Programming for Causal Structure Learning in the Presence of
Latent Variables [28.893119229428713]
本稿では,整数プログラミング(IP)の定式化を解き,連続変数の集合に対してスコア最大化祖先ADMGを返却する,新しい正確なスコアベース手法を提案する。
特に、DAG学習問題に対する最先端IPモデルを一般化し、有効な不等式の新しいクラスを導出し、IPベースのADMG学習モデルを形式化する。
論文 参考訳(メタデータ) (2021-02-05T12:10:16Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
情報理論の概念,すなわち相互情報と情報のボトルネックを用いてメタ学習を定式化する。
相互情報に対する変分近似を用いることで、メタ学習のための汎用的かつトラクタブルな枠組みを導出する。
論文 参考訳(メタデータ) (2020-09-07T16:47:30Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
半教師付き学習における簡単なメタ学習アルゴリズムを提案する。
その結果,提案アルゴリズムは最先端の手法に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2020-07-08T08:48:56Z) - Learning the Markov order of paths in a network [1.5229257192293197]
ネットワーク内の経路を表す分類列におけるマルコフ順序の学習問題について検討する。
経路に対するマルチオーダー・モデリング・フレームワークを導入し,マルコフ順序をより確実に検出するベイズ学習手法を開発した。
我々の研究は、ネットワーク分析における高次モデルの必要性を強調する研究機関の成長にさらに関係している。
論文 参考訳(メタデータ) (2020-07-06T16:27:02Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。