Quantum computing hardware in the cloud: Should a computational chemist
care?
- URL: http://arxiv.org/abs/2102.03248v2
- Date: Mon, 31 May 2021 10:58:29 GMT
- Title: Quantum computing hardware in the cloud: Should a computational chemist
care?
- Authors: A. Rossi, P.G. Baity, V.M. Sch\"afer and M. Weides
- Abstract summary: We review the types of quantum computing hardware that have been made available to the public through cloud services.
For each one we summarise the basic physical operations, requirements and performance.
We discuss to what extent each system has been used for molecular chemistry problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the last decade much progress has been made in the experimental
realisation of quantum computing hardware based on a variety of physical
systems. Rapid progress has been fuelled by the conviction that sufficiently
powerful quantum machines will herald enormous computational advantages in many
fields, including chemical research. A quantum computer capable of simulating
the electronic structures of complex molecules would be a game changer for the
design of new drugs and materials. Given the potential implications of this
technology, there is a need within the chemistry community to keep abreast with
the latest developments as well as becoming involved in experimentation with
quantum prototypes. To facilitate this, here we review the types of quantum
computing hardware that have been made available to the public through cloud
services. We focus on three architectures, namely superconductors, trapped ions
and semiconductors. For each one we summarise the basic physical operations,
requirements and performance. We discuss to what extent each system has been
used for molecular chemistry problems and highlight the most pressing hardware
issues to be solved for a chemistry-relevant quantum advantage to eventually
emerge.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Architectures for Quantum Information Processing [5.190207094732672]
Quantum computing is changing the way we think about computing.
Quantum phenomena like superposition, entanglement, and interference can be exploited to solve issues that are difficult for traditional computers.
IBM's first public access to true quantum computers through the cloud, as well as Google's demonstration of quantum supremacy, are among the accomplishments.
arXiv Detail & Related papers (2022-11-11T19:18:44Z) - The Basics of Quantum Computing for Chemists [0.0]
We review and illustrate the basic aspects of quantum information and their relation to quantum computing.
We discuss the current landscape when of relevance to quantum chemical simulations in quantum computers.
arXiv Detail & Related papers (2022-03-28T20:10:00Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Computing Methods for Supervised Learning [0.08594140167290096]
Small-scale quantum computers and quantum annealers have been built and are already being sold commercially.
We provide a background and summarize key results of quantum computing before exploring its application to supervised machine learning problems.
arXiv Detail & Related papers (2020-06-22T06:34:42Z) - Quantum algorithms for quantum chemistry and quantum materials science [2.867517731896504]
We briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer.
We take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
arXiv Detail & Related papers (2020-01-10T22:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.