Architectures for Quantum Information Processing
- URL: http://arxiv.org/abs/2211.06449v1
- Date: Fri, 11 Nov 2022 19:18:44 GMT
- Title: Architectures for Quantum Information Processing
- Authors: Suryansh Upadhyay, Mahabubul Alam, and Swaroop Ghosh
- Abstract summary: Quantum computing is changing the way we think about computing.
Quantum phenomena like superposition, entanglement, and interference can be exploited to solve issues that are difficult for traditional computers.
IBM's first public access to true quantum computers through the cloud, as well as Google's demonstration of quantum supremacy, are among the accomplishments.
- Score: 5.190207094732672
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computing is changing the way we think about computing. Significant
strides in research and development for managing and harnessing the power of
quantum systems has been made in recent years, demonstrating the potential for
transformative quantum technology. Quantum phenomena like superposition,
entanglement, and interference can be exploited to solve issues that are
difficult for traditional computers. IBM's first public access to true quantum
computers through the cloud, as well as Google's demonstration of quantum
supremacy, are among the accomplishments. Besides, a slew of other commercial,
government, and academic projects are in the works to create next-generation
hardware, a software stack to support the hardware ecosystem, and viable
quantum algorithms. This chapter covers various quantum computing architectures
including many hardware technologies that are being investigated. We also
discuss a variety of challenges, including numerous errors/noise that plague
the quantum computers. An overview of literature investigating noise-resilience
approaches is also presented.
Related papers
- Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Shaping photons: quantum computation with bosonic cQED [41.94295877935867]
We discuss the progress, challenges, and future directions in building a bosonic cQED quantum computer.
We conclude with our views of the key challenges that lie on the horizon, as well as scientific and cultural strategies for overcoming them.
arXiv Detail & Related papers (2023-11-07T09:59:57Z) - Quantum Computing Toolkit From Nuts and Bolts to Sack of Tools [0.0]
Quantum computing has the potential to provide exponential performance benefits in processing over classical computing.
It utilizes quantum mechanics phenomena (such as superposition, entanglement, and interference) to solve a computational problem.
Quantum computers are in the nascent stage of development and are noisy due to decoherence, i.e., quantum bits deteriorate with environmental interactions.
arXiv Detail & Related papers (2023-02-17T14:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Quantum in the Cloud: Application Potentials and Research Opportunities [0.39146761527401425]
Quantum computers are becoming real, and they have the inherent potential to significantly impact many application domains.
We sketch the basics about programming quantum computers, showing that quantum programs are typically hybrid consisting of a mixture of classical parts and quantum parts.
arXiv Detail & Related papers (2020-03-13T13:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.