論文の概要: On the Sample Complexity of Causal Discovery and the Value of Domain
Expertise
- arxiv url: http://arxiv.org/abs/2102.03274v1
- Date: Fri, 5 Feb 2021 16:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 01:07:57.127177
- Title: On the Sample Complexity of Causal Discovery and the Value of Domain
Expertise
- Title(参考訳): 因果的発見のサンプル複雑さとドメインエキスパートの価値について
- Authors: Samir Wadhwa, Roy Dong
- Abstract要約: 因果発見法は、純粋観測データからランダム変数間の因果関係を同定する。
本稿では,CIオラクルを使わずに因果探索アルゴリズムのサンプル複雑性を解析する。
我々の方法では、データサンプルの観点からドメインの専門知識の価値を定量化できます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery methods seek to identify causal relations between random
variables from purely observational data, as opposed to actively collected
experimental data where an experimenter intervenes on a subset of correlates.
One of the seminal works in this area is the Inferred Causation algorithm,
which guarantees successful causal discovery under the assumption of a
conditional independence (CI) oracle: an oracle that can states whether two
random variables are conditionally independent given another set of random
variables. Practical implementations of this algorithm incorporate statistical
tests for conditional independence, in place of a CI oracle. In this paper, we
analyze the sample complexity of causal discovery algorithms without a CI
oracle: given a certain level of confidence, how many data points are needed
for a causal discovery algorithm to identify a causal structure? Furthermore,
our methods allow us to quantify the value of domain expertise in terms of data
samples. Finally, we demonstrate the accuracy of these sample rates with
numerical examples, and quantify the benefits of sparsity priors and known
causal directions.
- Abstract(参考訳): 因果発見法は、実験者が相関関係のサブセットに介入する実験データに対して、純粋に観測データからランダム変数間の因果関係を同定する。
これは条件付き独立(CI) oracle: 2つのランダム変数が条件付き独立であるかどうかを別のランダム変数の集合で表すことができるオーラクルである。
このアルゴリズムの実践的実装には、CIオラクルの代わりに条件付き独立性に関する統計的テストが組み込まれている。
本稿では、CIオラクルを使わずに因果発見アルゴリズムのサンプル複雑性を分析する:一定の信頼度から、因果発見アルゴリズムが因果構造を特定するのに必要なデータポイントがいくつ必要か。
さらに、本手法は、データサンプルの観点から、ドメインの専門知識の価値を定量化することができる。
最後に,これらのサンプルレートの精度を数値例で示し,スパーシティ優先と既知の因果方向の利点を定量化する。
関連論文リスト
- Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
任意の因果モデルと異種データに対応する新しいFCD法を提案する。
これらのアプローチには、データのプライバシを保護するために、生データのプロキシとして要約統計を構築することが含まれる。
提案手法の有効性を示すために, 合成および実データを用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-02-20T18:53:53Z) - A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
因果ネットワークの至る所で、因果関係の隠れ変数の存在を許容する因果発見のための新しい枠組みを提案する。
ランクに基づく潜在因果探索アルゴリズム(RLCD)を開発し、隠れ変数を効率よく探索し、その濃度を判定し、測定値と隠れ変数の両方に対して因果構造全体を発見する。
合成・実世界のパーソナリティデータセットを用いた実験結果から,有限サンプルケースにおける提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-12-18T07:57:39Z) - A Survey on Causal Discovery Methods for I.I.D. and Time Series Data [4.57769506869942]
因果発見(CD)アルゴリズムは、関連する観測データからシステムの変数間の因果関係を識別することができる。
本稿では、独立および同一分散データ(I.I.D.)データと時系列データの両方から因果発見を行うために設計された手法について広範な議論を行う。
論文 参考訳(メタデータ) (2023-03-27T09:21:41Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Towards Dynamic Causal Discovery with Rare Events: A Nonparametric
Conditional Independence Test [4.67306371596399]
我々は,稀だが連続的な事象が発生した時変システムから収集したデータに対して,新しい統計的独立性テストを導入する。
提案手法の整合性に対する非漸近的サンプルバウンダリを提供し,その性能をシミュレーションおよび実世界のデータセットで検証する。
論文 参考訳(メタデータ) (2022-11-29T21:15:51Z) - Valid Inference After Causal Discovery [73.87055989355737]
我々は、因果関係発見後の推論に有効なツールを開発する。
因果発見とその後の推論アルゴリズムの組み合わせは,高度に膨らんだ誤発見率をもたらすことを示す。
論文 参考訳(メタデータ) (2022-08-11T17:40:45Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
論文 参考訳(メタデータ) (2022-06-03T16:25:48Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
ゲノミクスのような特定の環境では、不均一な研究条件からのデータがあり、研究変数のサブセットのみに関連するソフトな(部分的な)介入がある。
観察データと介入データとの混合に対する介入BGeスコアを定義し,介入の目的と効果が不明である可能性がある。
論文 参考訳(メタデータ) (2022-05-05T12:32:08Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
不均一な治療効果を推定することは、多くの領域において重要な問題である。
現在、現存するほとんどの作品は観測データにのみ依存している。
本稿では、大量の観測データと少量のランダム化データを組み合わせることで、不均一な処理効果を推定する。
論文 参考訳(メタデータ) (2022-02-25T18:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。