論文の概要: BaCaDI: Bayesian Causal Discovery with Unknown Interventions
- arxiv url: http://arxiv.org/abs/2206.01665v1
- Date: Fri, 3 Jun 2022 16:25:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-06 14:05:16.794831
- Title: BaCaDI: Bayesian Causal Discovery with Unknown Interventions
- Title(参考訳): bacadi: 未知の介入によるベイズ因果発見
- Authors: Alexander H\"agele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath,
Bernhard Sch\"olkopf, Andreas Krause
- Abstract要約: BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
- 参考スコア(独自算出の注目度): 118.93754590721173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning causal structures from observation and experimentation is a central
task in many domains. For example, in biology, recent advances allow us to
obtain single-cell expression data under multiple interventions such as drugs
or gene knockouts. However, a key challenge is that often the targets of the
interventions are uncertain or unknown. Thus, standard causal discovery methods
can no longer be used. To fill this gap, we propose a Bayesian framework
(BaCaDI) for discovering the causal structure that underlies data generated
under various unknown experimental/interventional conditions. BaCaDI is fully
differentiable and operates in the continuous space of latent probabilistic
representations of both causal structures and interventions. This enables us to
approximate complex posteriors via gradient-based variational inference and to
reason about the epistemic uncertainty in the predicted structure. In
experiments on synthetic causal discovery tasks and simulated gene-expression
data, BaCaDI outperforms related methods in identifying causal structures and
intervention targets. Finally, we demonstrate that, thanks to its rigorous
Bayesian approach, our method provides well-calibrated uncertainty estimates.
- Abstract(参考訳): 観察と実験から因果構造を学ぶことは、多くの領域において中心的な課題である。
例えば、生物学では、最近の進歩により、薬物や遺伝子ノックアウトのような複数の介入の下で単一細胞の発現データを得ることができる。
しかし、重要な課題は、多くの場合、介入のターゲットが不確かまたは不明であることです。
したがって、標準的な因果発見法はもはや使用できない。
このギャップを埋めるために、未知の実験的・インターベンショナルな条件下で生成されたデータの基盤となる因果構造を発見するためのBaCaDIフレームワークを提案する。
BaCaDIは完全に分化可能であり、因果構造と介入の両方の潜在確率的表現の連続空間で機能する。
これにより、勾配に基づく変分推論により複素後流を近似し、予測した構造における認識論的不確かさを推論することができる。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
最後に,その厳密なベイズ的アプローチにより,不確実性の推定精度が向上することを示す。
関連論文リスト
- Bayesian causal discovery from unknown general interventions [55.2480439325792]
本稿では,観測データと介入実験データを組み合わせたDAG(Cousal Directed Acyclic Graphs)の学習問題について考察する。
我々は,DAG,介入対象,誘導親集合上の後続分布を近似するマルコフ連鎖モンテカルロスキームを開発した。
論文 参考訳(メタデータ) (2023-12-01T11:30:51Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
ゲノミクスのような特定の環境では、不均一な研究条件からのデータがあり、研究変数のサブセットのみに関連するソフトな(部分的な)介入がある。
観察データと介入データとの混合に対する介入BGeスコアを定義し,介入の目的と効果が不明である可能性がある。
論文 参考訳(メタデータ) (2022-05-05T12:32:08Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
最近の研究は、介入した変数が未知であっても、勾配に基づく手法による介入データを活用することにより因果発見の有望な結果を示している。
複数の介入分布と1つの観察分布からサンプリングされた広範囲なデータセットを用いたシナリオを想定するが、どの分布がそれぞれのサンプルに由来するのか、どのように介入がシステムに影響を及ぼすのかはわからない。
本稿では、ニューラルネットワークと変分推論に基づいて、無限混合物間の共用因果グラフを学習することで、このシナリオに対処する手法を提案する。
論文 参考訳(メタデータ) (2022-03-04T14:21:28Z) - Interventions, Where and How? Experimental Design for Causal Models at
Scale [47.63842422086614]
観測データと介入データからの因果発見は、限られたデータと非識別性のために困難である。
本稿では,ベイジアン因果発見の最近の進歩を,ベイジアン最適実験設計フレームワークに取り入れる。
本稿では, 線形および非線形SCMの合成グラフと, シリコン内単一細胞遺伝子制御ネットワークデータセットであるDREAMの性能について述べる。
論文 参考訳(メタデータ) (2022-03-03T20:59:04Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Tracking disease outbreaks from sparse data with Bayesian inference [55.82986443159948]
新型コロナウイルス(COVID-19)のパンデミックは、感染発生時の感染率を推定する新たな動機を与える。
標準的な手法は、より細かいスケールで共通する部分的な観測可能性とスパースなデータに対応するのに苦労する。
原理的に部分観測可能なベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2020-09-12T20:37:33Z) - MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
Variable Models [14.173184309520453]
因果推論の最先端の手法は、欠落した値を考慮していない。
欠落したデータは、適応された未確立仮説を必要とする。
欠落した値に適応した変分オートエンコーダを通じて分布を学習する潜在的共同設立者について考察する。
論文 参考訳(メタデータ) (2020-02-25T12:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。