論文の概要: Sill-Net: Feature Augmentation with Separated Illumination
Representation
- arxiv url: http://arxiv.org/abs/2102.03539v1
- Date: Sat, 6 Feb 2021 09:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 08:22:16.621806
- Title: Sill-Net: Feature Augmentation with Separated Illumination
Representation
- Title(参考訳): Sill-Net: 分離イルミネーション表現による特徴増強
- Authors: Haipeng Zhang, Zhong Cao, Ziang Yan, Changshui Zhang
- Abstract要約: 分離イルミネーションネットワーク(Sill-Net)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
Sill-Netは、画像から照明機能を分離することを学び、トレーニング中に、これらの照明機能を特徴空間で分離したトレーニングサンプルを拡張する。
実験により,本手法はいくつかのオブジェクト分類ベンチマークにおいて,最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 35.25230715669166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For visual object recognition tasks, the illumination variations can cause
distinct changes in object appearance and thus confuse the deep neural network
based recognition models. Especially for some rare illumination conditions,
collecting sufficient training samples could be time-consuming and expensive.
To solve this problem, in this paper we propose a novel neural network
architecture called Separating-Illumination Network (Sill-Net). Sill-Net learns
to separate illumination features from images, and then during training we
augment training samples with these separated illumination features in the
feature space. Experimental results demonstrate that our approach outperforms
current state-of-the-art methods in several object classification benchmarks.
- Abstract(参考訳): 視覚物体認識タスクでは、照明の変動が物体の外観に異なる変化をもたらし、ディープニューラルネットワークベースの認識モデルを混乱させる可能性がある。
特に稀な照明条件では、十分なトレーニングサンプルの収集には時間と費用がかかる可能性がある。
そこで本研究では,分離イルミネーションネットワーク(Sill-Net)と呼ばれるニューラルネットワークアーキテクチャを提案する。
Sill-Netは、画像から照明機能を分離することを学び、トレーニング中に、これらの照明機能を特徴空間で分離したトレーニングサンプルを拡張する。
実験結果から,複数のオブジェクト分類ベンチマークにおいて,本手法が最新の手法を上回っていることが示された。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Efficient Visualization of Neural Networks with Generative Models and Adversarial Perturbations [0.0]
本稿では,既存の手法を改良した生成ネットワークによるディープビジュアライゼーション手法を提案する。
我々のモデルは、使用するネットワーク数を減らし、ジェネレータと識別器のみを必要とすることにより、アーキテクチャを単純化する。
我々のモデルは、事前の訓練知識を少なくし、差別者がガイドとして機能する非敵的訓練プロセスを使用する。
論文 参考訳(メタデータ) (2024-09-20T14:59:25Z) - Volume Feature Rendering for Fast Neural Radiance Field Reconstruction [11.05302598034426]
ニューラルレイディアンス場(NeRF)は、異なる位置と視点から撮影された多視点画像から現実的な新しいビューを合成することができる。
NeRFのレンダリングパイプラインでは、ニューラルネットワークはシーンを独立して表現したり、期待される色や密度のポイントのクエリ可能な特徴ベクトルを変換するために使用される。
提案手法では,まず,まず線の特徴ベクトルを描画し,次にニューラルネットワークにより最終画素色に変換する。
論文 参考訳(メタデータ) (2023-05-29T06:58:27Z) - Untrained, physics-informed neural networks for structured illumination
microscopy [0.456877715768796]
我々は、深層ニューラルネットワークと構造化照明プロセスの前方モデルを組み合わせることで、トレーニングデータなしでサブ回折像を再構成できることを示す。
結果として生じる物理インフォームドニューラルネットワーク(PINN)は、単一の回折制限されたサブイメージセットに最適化することができる。
論文 参考訳(メタデータ) (2022-07-15T19:02:07Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Learning Deep Context-Sensitive Decomposition for Low-Light Image
Enhancement [58.72667941107544]
典型的なフレームワークは、照明と反射を同時に推定することであるが、特徴空間にカプセル化されたシーンレベルの文脈情報を無視する。
本研究では,空間スケールにおけるシーンレベルのコンテキスト依存を生かした,コンテキスト依存型分解ネットワークアーキテクチャを提案する。
チャネル数を減らして軽量なCSDNet(LiteCSDNet)を開発する。
論文 参考訳(メタデータ) (2021-12-09T06:25:30Z) - Similarity and Matching of Neural Network Representations [0.0]
我々は、深層ニューラルネットワークにおける表現の類似性を分析するために、Frankenstein博士と呼ばれるツールセットを使用します。
我々は、2つのトレーニングニューラルネットワークの与えられた層上でのアクティベーションを、縫合層で結合することで一致させることを目指している。
論文 参考訳(メタデータ) (2021-10-27T17:59:46Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Multiplexed Illumination for Classifying Visually Similar Objects [2.715884199292287]
本稿では、多重照明を用いて、分類に成功できる対象の範囲を拡大することを提案する。
発光位置と色の組み合わせで試料を撮像する小型RGB-IR光ステージを構築した。
そこで我々は,照明パターンを選択し,得られた画像を用いて分類器を訓練する手法を開発した。
論文 参考訳(メタデータ) (2020-09-23T12:10:06Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。