論文の概要: Untrained, physics-informed neural networks for structured illumination
microscopy
- arxiv url: http://arxiv.org/abs/2207.07705v1
- Date: Fri, 15 Jul 2022 19:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 07:49:59.103608
- Title: Untrained, physics-informed neural networks for structured illumination
microscopy
- Title(参考訳): 構造化照明顕微鏡のための無訓練物理形ニューラルネットワーク
- Authors: Zachary Burns, Zhaowei Liu
- Abstract要約: 我々は、深層ニューラルネットワークと構造化照明プロセスの前方モデルを組み合わせることで、トレーニングデータなしでサブ回折像を再構成できることを示す。
結果として生じる物理インフォームドニューラルネットワーク(PINN)は、単一の回折制限されたサブイメージセットに最適化することができる。
- 参考スコア(独自算出の注目度): 0.456877715768796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years there has been great interest in using deep neural networks
(DNN) for super-resolution image reconstruction including for structured
illumination microscopy (SIM). While these methods have shown very promising
results, they all rely on data-driven, supervised training strategies that need
a large number of ground truth images, which is experimentally difficult to
realize. For SIM imaging, there exists a need for a flexible, general, and
open-source reconstruction method that can be readily adapted to different
forms of structured illumination. We demonstrate that we can combine a deep
neural network with the forward model of the structured illumination process to
reconstruct sub-diffraction images without training data. The resulting
physics-informed neural network (PINN) can be optimized on a single set of
diffraction limited sub-images and thus doesn't require any training set. We
show with simulated and experimental data that this PINN can be applied to a
wide variety of SIM methods by simply changing the known illumination patterns
used in the loss function and can achieve resolution improvements that match
well with theoretical expectations.
- Abstract(参考訳): 近年、構造的照明顕微鏡(SIM)を含む超高解像度画像再構成にディープニューラルネットワーク(DNN)を使うことに大きな関心が寄せられている。
これらの手法は非常に有望な結果を示しているが、これらは全てデータ駆動型で教師付きトレーニング戦略に依存しており、多くの基底真理画像を必要とする。
SIMイメージングには、様々な形態の構造化照明に容易に適応できるフレキシブルで汎用的でオープンソースな再構成手法が必要である。
深層ニューラルネットワークを,構造化照明プロセスの前方モデルと組み合わせることで,データをトレーニングすることなくサブディフュージョン画像を再構成できることを実証する。
結果として生じる物理インフォームドニューラルネットワーク(PINN)は、単一の回折制限されたサブイメージセットに最適化できるため、トレーニングセットは不要である。
このPINNは、損失関数で用いられる既知の照明パターンを単に変更するだけで、様々なSIM手法に適用でき、理論的な期待に合致する解像度改善が達成できることをシミュレーションおよび実験データで示す。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
異なるディープラーニングアプローチを用いた畳み込みニューラルネットワーク(CNN)は、解像度の低い画像から現実的なテクスチャときめ細かい詳細を復元しようとする。
本研究は、虹彩認識環境における虹彩超解法(SR)に対するこれらのアプローチの実現可能性について検討する。
その結果,CNNと画像再投影は,認識システムの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-20T09:46:23Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - BIM Hyperreality: Data Synthesis Using BIM and Hyperrealistic Rendering
for Deep Learning [3.4461633417989184]
写真に物体認識を構築するニューラルネットワークを訓練するためのハイブリッドシステムの概念を提示する。
本論文で提示した具体的ケーススタディでは,合成データで学習したニューラルネットワークを用いて,トレーニングデータに写真を用いることなく,写真から物体を識別できることが示されている。
論文 参考訳(メタデータ) (2021-05-10T04:08:24Z) - Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization [27.247818386065894]
光フィールド顕微鏡画像を用いた高速かつ堅牢なソースの3Dローカリゼーションを実現するモデルに基づくディープラーニング手法を提案する。
これは畳み込みスパース符号化問題を効率的に解くディープネットワークを開発することによって実現される。
光場からのほ乳類ニューロンの局在化実験により,提案手法が性能,解釈性,効率の向上をもたらすことが示された。
論文 参考訳(メタデータ) (2021-03-10T16:24:47Z) - Deep learning-based super-resolution fluorescence microscopy on small
datasets [20.349746411933495]
ディープラーニングは、技術的障壁を減らし、回折制限画像から超解像を得る可能性を示している。
本稿では,小型データセットと超解像画像の訓練を成功させた畳み込みニューラルネットワークに基づく新しいアプローチを示す。
このモデルは、大規模なトレーニングデータセットの取得が困難なMRIやX線イメージングなどの他のバイオメディカルイメージングモードに適用することができます。
論文 参考訳(メタデータ) (2021-03-07T03:17:47Z) - Sill-Net: Feature Augmentation with Separated Illumination
Representation [35.25230715669166]
分離イルミネーションネットワーク(Sill-Net)と呼ばれる新しいニューラルネットワークアーキテクチャを提案する。
Sill-Netは、画像から照明機能を分離することを学び、トレーニング中に、これらの照明機能を特徴空間で分離したトレーニングサンプルを拡張する。
実験により,本手法はいくつかのオブジェクト分類ベンチマークにおいて,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-02-06T09:00:10Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Deep neural networks for the evaluation and design of photonic devices [0.0]
レビュー:ディープニューラルネットワークは、トレーニングセットからどのように学習し、高速サロゲート電磁解法として動作するか。
フォトニクスの文脈内での基本的なデータ科学についても論じる。
論文 参考訳(メタデータ) (2020-06-30T19:52:54Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
形状とSVBRDFを段階的に推定した新しいディープラーニングアーキテクチャを提案する。
ドメインランダム化された幾何学と現実的な材料を用いた大規模合成学習データセットを作成する。
合成データセットと実世界のデータセットの両方の実験により、合成データセットでトレーニングされたネットワークが、実世界の画像に対してうまく一般化できることが示されている。
論文 参考訳(メタデータ) (2020-04-01T12:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。