Convolutional Neural Network-based Intrusion Detection System for AVTP
Streams in Automotive Ethernet-based Networks
- URL: http://arxiv.org/abs/2102.03546v1
- Date: Sat, 6 Feb 2021 09:37:09 GMT
- Title: Convolutional Neural Network-based Intrusion Detection System for AVTP
Streams in Automotive Ethernet-based Networks
- Authors: Seonghoon Jeong, Boosun Jeon, Boheung Chung, Huy Kang Kim
- Abstract summary: Connected and autonomous vehicles (CAVs) are an innovative form of traditional vehicles.
No previous studies have focused on intrusion detection in automotive Ethernet-based networks.
We present an intrusion detection method for detecting audio-video transport protocol (AVTP) stream injection attacks.
- Score: 2.141079906482723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connected and autonomous vehicles (CAVs) are an innovative form of
traditional vehicles. Automotive Ethernet replaces the controller area network
and FlexRay to support the large throughput required by high-definition
applications. As CAVs have numerous functions, they exhibit a large attack
surface and an increased vulnerability to attacks. However, no previous studies
have focused on intrusion detection in automotive Ethernet-based networks. In
this paper, we present an intrusion detection method for detecting audio-video
transport protocol (AVTP) stream injection attacks in automotive Ethernet-based
networks. To the best of our knowledge, this is the first such method developed
for automotive Ethernet. The proposed intrusion detection model is based on
feature generation and a convolutional neural network (CNN). To evaluate our
intrusion detection system, we built a physical BroadR-Reach-based testbed and
captured real AVTP packets. The experimental results show that the model
exhibits outstanding performance: the F1-score and recall are greater than
0.9704 and 0.9949, respectively. In terms of the inference time per input and
the generation intervals of AVTP traffic, our CNN model can readily be employed
for real-time detection.
Related papers
- A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
We present an assessment framework that allows for reproducible, comparable, and rapid evaluation of anomaly detection algorithms.
We evaluate exemplary detection mechanisms and reveal how the detection performance is influenced by different combinations of TSN traffic flows and anomaly types.
arXiv Detail & Related papers (2024-05-02T14:29:42Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors.
In this paper, we present a case for custom-quantised literature (CQMLP) as a multi-class classification model.
We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages with a very high accuracy of 99.9%.
arXiv Detail & Related papers (2024-01-19T21:11:02Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - AVTPnet: Convolutional Autoencoder for AVTP anomaly detection in
Automotive Ethernet Networks [2.415997479508991]
In this paper, we propose a convolutional autoencoder (CAE) for offline detection of anomalies on the Audio Video Transport Protocol (AVTP)
Our proposed approach is evaluated on the recently published " Automotive Ethernet Intrusion dataset"
arXiv Detail & Related papers (2022-01-31T19:13:20Z) - CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point
Clouds [51.47100091540298]
We present Cascaded Primitive Fitting Networks (CPFN) that relies on an adaptive patch sampling network to assemble detection results of global and local primitive detection networks.
CPFN improves the state-of-the-art SPFN performance by 13-14% on high-resolution point cloud datasets and specifically improves the detection of fine-scale primitives by 20-22%.
arXiv Detail & Related papers (2021-08-31T23:27:33Z) - SOME/IP Intrusion Detection using Deep Learning-based Sequential Models
in Automotive Ethernet Networks [2.3204135551124407]
Intrusion Detection Systems are widely used to detect cyberattacks.
We present a deep learning-based sequential model for offline intrusion detection on SOME/IP protocol.
arXiv Detail & Related papers (2021-08-04T09:58:06Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Enabling certification of verification-agnostic networks via
memory-efficient semidefinite programming [97.40955121478716]
We propose a first-order dual SDP algorithm that requires memory only linear in the total number of network activations.
We significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively.
We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.
arXiv Detail & Related papers (2020-10-22T12:32:29Z) - Binary DAD-Net: Binarized Driveable Area Detection Network for
Autonomous Driving [94.40107679615618]
This paper proposes a novel binarized driveable area detection network (binary DAD-Net)
It uses only binary weights and activations in the encoder, the bottleneck, and the decoder part.
It outperforms state-of-the-art semantic segmentation networks on public datasets.
arXiv Detail & Related papers (2020-06-15T07:09:01Z) - Traffic Signs Detection and Recognition System using Deep Learning [0.0]
This paper describes an approach for efficiently detecting and recognizing traffic signs in real-time.
We tackle the traffic sign detection problem using the state-of-the-art of multi-object detection systems.
The focus of this paper is going to be F-RCNN Inception v2 and Tiny YOLO v2 as they achieved the best results.
arXiv Detail & Related papers (2020-03-06T14:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.