Traffic Signs Detection and Recognition System using Deep Learning
- URL: http://arxiv.org/abs/2003.03256v1
- Date: Fri, 6 Mar 2020 14:54:40 GMT
- Title: Traffic Signs Detection and Recognition System using Deep Learning
- Authors: Pavly Salah Zaki, Marco Magdy William, Bolis Karam Soliman, Kerolos
Gamal Alexsan, Keroles Khalil, and Magdy El-Moursy
- Abstract summary: This paper describes an approach for efficiently detecting and recognizing traffic signs in real-time.
We tackle the traffic sign detection problem using the state-of-the-art of multi-object detection systems.
The focus of this paper is going to be F-RCNN Inception v2 and Tiny YOLO v2 as they achieved the best results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of technology, automobiles have become an
essential asset in our day-to-day lives. One of the more important researches
is Traffic Signs Recognition (TSR) systems. This paper describes an approach
for efficiently detecting and recognizing traffic signs in real-time, taking
into account the various weather, illumination and visibility challenges
through the means of transfer learning. We tackle the traffic sign detection
problem using the state-of-the-art of multi-object detection systems such as
Faster Recurrent Convolutional Neural Networks (F-RCNN) and Single Shot Multi-
Box Detector (SSD) combined with various feature extractors such as MobileNet
v1 and Inception v2, and also Tiny-YOLOv2. However, the focus of this paper is
going to be F-RCNN Inception v2 and Tiny YOLO v2 as they achieved the best
results. The aforementioned models were fine-tuned on the German Traffic Signs
Detection Benchmark (GTSDB) dataset. These models were tested on the host PC as
well as Raspberry Pi 3 Model B+ and the TASS PreScan simulation. We will
discuss the results of all the models in the conclusion section.
Related papers
- Real-Time Pedestrian Detection on IoT Edge Devices: A Lightweight Deep Learning Approach [1.4732811715354455]
This research explores implementing a lightweight deep learning model on Artificial Intelligence of Things (AIoT) edge devices.
An optimized You Only Look Once (YOLO) based DL model is deployed for real-time pedestrian detection.
The simulation results demonstrate that the optimized YOLO model can achieve real-time pedestrian detection, with a fast inference speed of 147 milliseconds, a frame rate of 2.3 frames per second, and an accuracy of 78%.
arXiv Detail & Related papers (2024-09-24T04:48:41Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
Driver distractions are known to be the dominant cause of road accidents.
State-of-the-art methods prioritize accuracy while ignoring latency.
We propose time-effective detection models by neglecting the temporal relation between video frames.
arXiv Detail & Related papers (2022-10-17T21:22:41Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
Two convolutional neural networks (CNNs) based on high-level feature descriptors are proposed to detect blind-spot collisions for heavy vehicles.
A fusion approach is proposed to integrate two pre-trained networks for extracting high level features for blind-spot vehicle detection.
The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods.
arXiv Detail & Related papers (2022-08-17T11:10:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
We provide a practical platform for real-time traffic monitoring using a single CCTV traffic camera.
We adapt a custom YOLOv5 deep neural network model for vehicle/pedestrian detection and an enhanced SORT tracking algorithm.
We also develop a hierarchical traffic modelling solution based on short- and long-term temporal video data stream.
arXiv Detail & Related papers (2021-09-19T16:59:01Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Convolutional Neural Network-based Intrusion Detection System for AVTP
Streams in Automotive Ethernet-based Networks [2.141079906482723]
Connected and autonomous vehicles (CAVs) are an innovative form of traditional vehicles.
No previous studies have focused on intrusion detection in automotive Ethernet-based networks.
We present an intrusion detection method for detecting audio-video transport protocol (AVTP) stream injection attacks.
arXiv Detail & Related papers (2021-02-06T09:37:09Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.