Learning adaptive differential evolution algorithm from optimization
experiences by policy gradient
- URL: http://arxiv.org/abs/2102.03572v1
- Date: Sat, 6 Feb 2021 12:01:20 GMT
- Title: Learning adaptive differential evolution algorithm from optimization
experiences by policy gradient
- Authors: Jianyong Sun and Xin Liu and Thomas B\"ack and Zongben Xu
- Abstract summary: This paper proposes a novel adaptive parameter control approach based on learning from the optimization experiences over a set of problems.
A reinforcement learning algorithm, named policy, is applied to learn an agent that can provide the control parameters of a proposed differential evolution adaptively.
The proposed algorithm performs competitively against nine well-known evolutionary algorithms on the CEC'13 and CEC'17 test suites.
- Score: 24.2122434523704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential evolution is one of the most prestigious population-based
stochastic optimization algorithm for black-box problems. The performance of a
differential evolution algorithm depends highly on its mutation and crossover
strategy and associated control parameters. However, the determination process
for the most suitable parameter setting is troublesome and time-consuming.
Adaptive control parameter methods that can adapt to problem landscape and
optimization environment are more preferable than fixed parameter settings.
This paper proposes a novel adaptive parameter control approach based on
learning from the optimization experiences over a set of problems. In the
approach, the parameter control is modeled as a finite-horizon Markov decision
process. A reinforcement learning algorithm, named policy gradient, is applied
to learn an agent (i.e. parameter controller) that can provide the control
parameters of a proposed differential evolution adaptively during the search
procedure. The differential evolution algorithm based on the learned agent is
compared against nine well-known evolutionary algorithms on the CEC'13 and
CEC'17 test suites. Experimental results show that the proposed algorithm
performs competitively against these compared algorithms on the test suites.
Related papers
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Frog-Snake prey-predation Relationship Optimization (FSRO) : A novel nature-inspired metaheuristic algorithm for feature selection [0.0]
This study proposes the Frog-Snake prey-predation Relationship Optimization (FSRO) algorithm.
It is inspired by the prey-predation relationship between frogs and snakes for application to discrete optimization problems.
The proposed algorithm conducts computational experiments on feature selection using 26 types of machine learning datasets.
arXiv Detail & Related papers (2024-02-13T06:39:15Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
This work concerns the evolutionary approaches to distributed black-box optimization.
Each worker can individually solve an approximation of the problem with algorithms.
We propose two alternative simulation schemes which significantly improve robustness of problems.
arXiv Detail & Related papers (2022-04-09T11:18:41Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - On Hyper-parameter Tuning for Stochastic Optimization Algorithms [28.88646928299302]
This paper proposes the first-ever algorithmic framework for tuning hyper-parameters of optimization algorithm based on reinforcement learning.
The proposed framework can be used as a standard tool for hyper-parameter tuning in algorithms.
arXiv Detail & Related papers (2020-03-04T12:29:12Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.