論文の概要: Does He Wink or Does He Nod? A Challenging Benchmark for Evaluating Word
Understanding of Language Models
- arxiv url: http://arxiv.org/abs/2102.03596v1
- Date: Sat, 6 Feb 2021 15:15:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 06:00:40.692981
- Title: Does He Wink or Does He Nod? A Challenging Benchmark for Evaluating Word
Understanding of Language Models
- Title(参考訳): 彼は勝つのか、うなずくのか?
言語モデルの単語理解評価のための挑戦的ベンチマーク
- Authors: Lutfi Kerem Senel and Hinrich Sch\"utze
- Abstract要約: 大規模コーパスにおける事前学習言語モデルの最近の進歩は、多くのNLPタスクにおいて大きなパフォーマンス向上をもたらした。
どのような知識が獲得されたかを評価するため、言語モデルは通常、空白スタイルのクローゼ質問を埋めてクエリすることで探索される。
単語の辞書定義を用いて単語理解を直接評価するためにWDLMProを導入する。
- 参考スコア(独自算出の注目度): 0.6091702876917281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in pretraining language models on large corpora has resulted
in large performance gains on many NLP tasks. These large models acquire
linguistic knowledge during pretraining, which helps to improve performance on
downstream tasks via fine-tuning. To assess what kind of knowledge is acquired,
language models are commonly probed by querying them with `fill in the blank'
style cloze questions. Existing probing datasets mainly focus on knowledge
about relations between words and entities. We introduce WDLMPro (Word
Definition Language Model Probing) to evaluate word understanding directly
using dictionary definitions of words. In our experiments, three popular
pretrained language models struggle to match words and their definitions. This
indicates that they understand many words poorly and that our new probing task
is a difficult challenge that could help guide research on LMs in the future.
- Abstract(参考訳): 大規模コーパス上での言語モデルの事前学習の進歩は、多くのnlpタスクで大きなパフォーマンス向上をもたらした。
これらの大規模モデルは事前訓練中に言語知識を取得し、微調整により下流タスクのパフォーマンスを向上させる。
どのような知識が取得されているかを評価するために、言語モデルは一般に「空欄に埋める」スタイルのクローゼ質問でクエリすることによって調査される。
既存の探索データセットは、主に単語と実体の関係に関する知識に焦点を当てている。
WDLMPro(Word Definition Language Model Probing)を導入し、単語の辞書定義を用いて単語理解を直接評価する。
私たちの実験では、3つの一般的な学習済み言語モデルが単語とその定義と一致するのに苦労しています。
これは、多くの単語が理解できないこと、そして我々の新しい探索タスクが、将来のLMの研究をガイドする上で難しい課題であることを示している。
関連論文リスト
- Large Vocabulary Size Improves Large Language Models [28.83786065307658]
単語語彙サイズと大規模言語モデル(LLM)の性能の関係について検討する。
実験結果から,LLMの語彙サイズが大きくなると性能が向上することがわかった。
事前定義された語彙の代わりに新しい語彙を使用するための簡単な方法を導入する。
論文 参考訳(メタデータ) (2024-06-24T10:27:07Z) - Tokenization Impacts Multilingual Language Modeling: Assessing
Vocabulary Allocation and Overlap Across Languages [3.716965622352967]
サブワードトークン化器で観測される語彙表現と語彙重複の質を評価するための新しい基準を提案する。
以上の結果から,言語間の語彙の重複は,特定の下流課題に支障を来す可能性があることが示唆された。
論文 参考訳(メタデータ) (2023-05-26T18:06:49Z) - Translate to Disambiguate: Zero-shot Multilingual Word Sense
Disambiguation with Pretrained Language Models [67.19567060894563]
事前訓練された言語モデル(PLM)は、豊富な言語間知識を学習し、多様なタスクでうまく機能するように微調整することができる。
C-WLT(Contextual Word-Level Translation)を用いた言語間単語感覚の捉え方の検討を行った。
モデルのサイズが大きくなるにつれて、PLMはより言語間単語認識の知識をエンコードし、WLT性能を改善するためのコンテキストを良くする。
論文 参考訳(メタデータ) (2023-04-26T19:55:52Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Word Order Does Matter (And Shuffled Language Models Know It) [9.990431777927421]
近年の研究では、ランダムに置換された文に対して事前訓練および/または微調整された言語モデルがGLUE上での競合性能を示すことが示されている。
シャッフルテキストエンコードから得られた位置埋め込みについて検討し、これらのモデルが元の自然主義的な単語順序に関する情報を保持することを示す。
論文 参考訳(メタデータ) (2022-03-21T14:10:15Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z) - Dict-BERT: Enhancing Language Model Pre-training with Dictionary [42.0998323292348]
事前学習型言語モデル(PLM)は,大規模コーパス上で自己指導型学習タスクを行うことで,普遍的な言語表現を学習することを目的としている。
本研究では,辞書におけるレアワードの定義を活用することで,言語モデル事前学習の強化に焦点をあてる。
入力テキストシーケンスとまれな単語定義間の単語と文レベルのアライメントに関する2つの新しい自己教師付き事前学習タスクを提案する。
論文 参考訳(メタデータ) (2021-10-13T04:29:14Z) - Allocating Large Vocabulary Capacity for Cross-lingual Language Model
Pre-training [59.571632468137075]
最近の言語間言語モデルでは,語彙の容量が限られているため,多くの言語が不足していることがわかった。
本稿では,各言語の語彙能力を決定するアルゴリズムであるVoCapを提案する。
この問題に対処するために,k-NNに基づくターゲットサンプリングを提案し,コストの高いソフトマックスを高速化する。
論文 参考訳(メタデータ) (2021-09-15T14:04:16Z) - Probing Across Time: What Does RoBERTa Know and When? [70.20775905353794]
言語知識は、ドメイン間で高速、安定、そして堅牢に獲得されることを示す。
事実と常識はより遅く、ドメインに敏感です。
クロスタイム探索は、これらのモデルが生み出す複雑で混ざった学習を理解するのに役立ち、必要な学習を迅速に行うためのより効率的なアプローチへと導いてくれると信じています。
論文 参考訳(メタデータ) (2021-04-16T04:26:39Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。