論文の概要: Emergency Department Optimization and Load Prediction in Hospitals
- arxiv url: http://arxiv.org/abs/2102.03672v1
- Date: Sat, 6 Feb 2021 21:52:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 17:27:11.186802
- Title: Emergency Department Optimization and Load Prediction in Hospitals
- Title(参考訳): 病院における緊急部門最適化と負荷予測
- Authors: Karthik K. Padthe, Vikas Kumar, Carly M. Eckert, Nicholas M. Mark,
Anam Zahid, Muhammad Aurangzeb Ahmad, Ankur Teredesai
- Abstract要約: 我々は、ED到着とED患者の容積を予測するための機械学習モデルを用いたツールを開発した。
本稿では,本ツールを用いたアクティブな臨床展開におけるユーザ体験から得られた予測モデル,課題,および学習結果について論じる。
- 参考スコア(独自算出の注目度): 9.90154803957148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past several years, across the globe, there has been an increase in
people seeking care in emergency departments (EDs). ED resources, including
nurse staffing, are strained by such increases in patient volume. Accurate
forecasting of incoming patient volume in emergency departments (ED) is crucial
for efficient utilization and allocation of ED resources. Working with a
suburban ED in the Pacific Northwest, we developed a tool powered by machine
learning models, to forecast ED arrivals and ED patient volume to assist
end-users, such as ED nurses, in resource allocation. In this paper, we discuss
the results from our predictive models, the challenges, and the learnings from
users' experiences with the tool in active clinical deployment in a real world
setting.
- Abstract(参考訳): 過去数年間、世界中で、救急部門(ED)でケアを求める人々が増加しています。
看護スタッフを含むEDリソースは、そのような患者数の増加に悩まされている。
救急部門における患者容積の正確な予測は, ed資源の効率的な活用と配分に不可欠である。
我々は,太平洋岸北西部の郊外のEDと共同で,ED到着率とED患者数を予測する機械学習モデルを用いたツールを開発し,ED看護師などのエンドユーザの資源配分を支援した。
本論文では,私たちの予測モデルから得られた結果,課題,および実世界での臨床展開におけるツールを用いたユーザの経験から得られる学習について考察する。
関連論文リスト
- STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - ED-Copilot: Reduce Emergency Department Wait Time with Language Model Diagnostic Assistance [19.740597797776093]
救急部(ED)では、診断前にトリアージと複数回の検査を行った。
この時間のかかるプロセスは、患者の死亡率、医療ミス、スタッフの燃え尽きなどを引き起こす。
本研究は,人工知能システムを活用した費用対効果診断支援を提案する。
論文 参考訳(メタデータ) (2024-02-21T00:49:42Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Hospitalization Length of Stay Prediction using Patient Event Sequences [4.204781617630707]
本稿では,患者情報をイベントのシーケンスとしてモデル化し,入院期間(LOS)を予測するための新しいアプローチを提案する。
本稿では,患者の医療イベントシーケンスを記述したユニークな特徴を用いたLOS予測のためのトランスフォーマーベースモデルMedic-BERT(M-BERT)を提案する。
実験結果から,M-BERTは様々なLOS問題に対して高い精度を達成でき,従来の非シーケンスベース機械学習手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-20T11:48:36Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - A Temporal Fusion Transformer for Long-term Explainable Prediction of
Emergency Department Overcrowding [0.0]
救急省(英語: emergency Departments、略称:ED)は、ポルトガル国立衛生局(英語版)の基本的な要素である。
サービスを利用する患者の数を予測することは特に困難である。
本稿では,新しい深層学習アーキテクチャであるTemporal Fusion Transformerについて述べる。
我々は,ポルトガルの保健地域(HRA)では平均絶対過誤(MAPE)が5.90%,Root Mean Squared Error(RMSE)が84.4102人/日で予測可能であると結論づけた。
論文 参考訳(メタデータ) (2022-07-01T18:08:07Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Benchmarking Predictive Risk Models for Emergency Departments with Large
Public Electronic Health Records [7.928862476020428]
大規模な公開 EHR に基づく広く受け入れられている ED ベンチマークは存在しない。
我々は、パブリックEDベンチマークスイートを提案し、2011年から2019年までの50万回のED訪問を含むベンチマークデータセットを得た。
私たちのコードはオープンソースなので、MIMIC-IV-EDにアクセス可能な人は、データ処理の同じステップを辿り、ベンチマークを構築し、実験を再現できます。
論文 参考訳(メタデータ) (2021-11-22T06:51:11Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Effect of different patient peak arrivals on an Emergency Department via
discrete event simulation [0.0]
イタリア中部の地震で被害を受けた中規模EDを流れる患者を調査するモデルを提案する。
特に本研究の目的は,患者到着回数の急激な急激な増加を引き起こす危機事象(自然災害など)に対応する,異常なED条件をシミュレートすることである。
このモデルは、大規模災害が発生した場合に起動する特定の緊急計画を定義する上で、ED管理者に有効な意思決定支援システムを提供する。
論文 参考訳(メタデータ) (2021-01-29T06:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。