論文の概要: Hospitalization Length of Stay Prediction using Patient Event Sequences
- arxiv url: http://arxiv.org/abs/2303.11042v1
- Date: Mon, 20 Mar 2023 11:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 15:45:46.045047
- Title: Hospitalization Length of Stay Prediction using Patient Event Sequences
- Title(参考訳): 患者イベント系列を用いた定常予測の入院期間
- Authors: Emil Riis Hansen, Thomas Dyhre Nielsen, Thomas Mulvad, Mads Nibe
Strausholm, Tomer Sagi, Katja Hose
- Abstract要約: 本稿では,患者情報をイベントのシーケンスとしてモデル化し,入院期間(LOS)を予測するための新しいアプローチを提案する。
本稿では,患者の医療イベントシーケンスを記述したユニークな特徴を用いたLOS予測のためのトランスフォーマーベースモデルMedic-BERT(M-BERT)を提案する。
実験結果から,M-BERTは様々なLOS問題に対して高い精度を達成でき,従来の非シーケンスベース機械学習手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 4.204781617630707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting patients hospital length of stay (LOS) is essential for improving
resource allocation and supporting decision-making in healthcare organizations.
This paper proposes a novel approach for predicting LOS by modeling patient
information as sequences of events. Specifically, we present a
transformer-based model, termed Medic-BERT (M-BERT), for LOS prediction using
the unique features describing patients medical event sequences. We performed
empirical experiments on a cohort of more than 45k emergency care patients from
a large Danish hospital. Experimental results show that M-BERT can achieve high
accuracy on a variety of LOS problems and outperforms traditional
nonsequence-based machine learning approaches.
- Abstract(参考訳): 病院入院期間(LOS)の予測は,医療機関における資源配分の改善と意思決定支援に不可欠である。
本稿では,患者情報をイベントのシーケンスとしてモデル化することでLOSを予測する新しい手法を提案する。
具体的には、医療イベントシーケンスを記述したユニークな特徴を用いて、LOS予測のためのトランスフォーマーモデルMedic-BERT(M-BERT)を提案する。
デンマークの大規模病院で45万人以上の救急患者を対象に, 実験を行った。
実験結果から,M-BERTは様々なLOS問題に対して高い精度を達成でき,従来の非シーケンスベース機械学習手法よりも優れていることがわかった。
関連論文リスト
- Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model [4.918444397807014]
本研究は, LSTMネットワークと機能工学を用いたメディケア病院の入院状況を分析し, コントリビューションの評価を行った。
LSTMモデルは、入院レベルおよび患者レベルのデータから時間的ダイナミクスを捉えるように設計されている。
主な特徴は、Charlson Comorbidity Index、病院の滞在時間、過去6ヶ月間の入院、人口統計学の変数は影響を受けなかった。
論文 参考訳(メタデータ) (2024-10-23T03:50:32Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
そこで我々は,未計画の病院入退院を予測するための,新しい,解釈可能な深層学習フレームワークを提案する。
実際のデータを用いて,30日と180日以内に病院入退院の2つの予測課題について,本システムの有効性を検証した。
論文 参考訳(メタデータ) (2023-10-16T08:48:52Z) - CPLLM: Clinical Prediction with Large Language Models [0.07083082555458872]
本稿では,臨床疾患に対するLLM(Pre-trained Large Language Model)の微調整と寛容予測を行う手法を提案する。
診断予測には,患者の来訪時に対象疾患と診断されるか,その後に診断されるかを,過去の診断記録を利用して予測する。
提案手法であるCPLLMは,PR-AUCおよびROC-AUCの指標で試験された全てのモデルを上回ることを示した。
論文 参考訳(メタデータ) (2023-09-20T13:24:12Z) - Assessing the impact of emergency department short stay units using
length-of-stay prediction and discrete event simulation [1.0822676139724565]
救急部門から一般内科に入院した患者に対して,入院期間を予測する意思決定支援システムの構築を目指す。
我々は探索的データ分析を行い、最高の予測性能をもたらす属性を識別するために特徴選択手法を用いる。
論文 参考訳(メタデータ) (2023-08-04T22:26:02Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - MedGPT: Medical Concept Prediction from Clinical Narratives [0.23488056916440858]
患者の医療履歴の時間的モデリングは、将来の出来事を予測するのに使用できる。
名前付きエンティティ認識とリンクツールを用いたトランスフォーマーベースのパイプラインであるMedGPTを提案する。
本モデルでは, 医療用多選択肢質問応答タスクを用いて, 医療知識を抽出し, 評価を行った。
論文 参考訳(メタデータ) (2021-07-07T10:36:28Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。