Black-Box Optimization via Generative Adversarial Nets
- URL: http://arxiv.org/abs/2102.03888v1
- Date: Sun, 7 Feb 2021 19:12:09 GMT
- Title: Black-Box Optimization via Generative Adversarial Nets
- Authors: Minfang Lu, Fengyang Sun, Lin Wang, Bo Yang, Shuangrong Liu
- Abstract summary: We present agenerative adversarial nets (OPT-GAN) to guide search on black-box problems.
Experiments demonstrate that OPT-GAN outperforms other classical BBO algorithms.
- Score: 6.46243851154653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Black-box optimization (BBO) algorithms are concerned with finding the best
solutions for the problems with missing analytical details. Most classical
methods for such problems are based on strong and fixed \emph{a priori}
assumptions such as Gaussian distribution. However, lots of complex real-world
problems are far from the \emph{a priori} distribution, bringing some
unexpected obstacles to these methods. In this paper, we present an optimizer
using generative adversarial nets (OPT-GAN) to guide search on black-box
problems via estimating the distribution of optima. The method learns the
extensive distribution of the optimal region dominated by selective candidates.
Experiments demonstrate that OPT-GAN outperforms other classical BBO
algorithms, in particular the ones with Gaussian assumptions.
Related papers
- Sharpness-Aware Black-Box Optimization [47.95184866255126]
We propose a Sharpness-Aware Black-box Optimization (SABO) algorithm, which applies a sharpness-aware minimization strategy to improve the model generalization.
Empirically, extensive experiments on the black-box prompt fine-tuning tasks demonstrate the effectiveness of the proposed SABO method in improving model generalization performance.
arXiv Detail & Related papers (2024-10-16T11:08:06Z) - High dimensional Bayesian Optimization via Condensing-Expansion Projection [1.6355174910200032]
In high-dimensional settings, Bayesian optimization (BO) can be expensive and infeasible.
We introduce a novel random projection-based approach for high-dimensional BO that does not reply on the effective subspace assumption.
Experimental results demonstrate that both algorithms outperform existing random embedding-based algorithms in most cases.
arXiv Detail & Related papers (2024-08-09T04:47:38Z) - Covariance-Adaptive Sequential Black-box Optimization for Diffusion Targeted Generation [60.41803046775034]
We show how to perform user-preferred targeted generation via diffusion models with only black-box target scores of users.
Experiments on both numerical test problems and target-guided 3D-molecule generation tasks show the superior performance of our method in achieving better target scores.
arXiv Detail & Related papers (2024-06-02T17:26:27Z) - Semi-Bandit Learning for Monotone Stochastic Optimization [20.776114616154242]
We provide a generic online learning algorithm for a class of "monotone" problems.
Our framework applies to several fundamental problems in optimization such as prophet, Pandora's box knapsack, inequality matchings and submodular optimization.
arXiv Detail & Related papers (2023-12-24T07:46:37Z) - Stochastic Bayesian Optimization with Unknown Continuous Context
Distribution via Kernel Density Estimation [28.413085548038932]
We propose two algorithms that employ kernel density estimation to learn the probability density function (PDF) of continuous context variable online.
Theoretical results demonstrate that both algorithms have sub-linear Bayesian cumulative regret on the expectation objective.
arXiv Detail & Related papers (2023-12-16T11:32:28Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Accounting for Gaussian Process Imprecision in Bayesian Optimization [0.0]
We study the effect of the Gaussian processes' prior specifications on classical BO's convergence.
We introduce PROBO as a generalization of BO that aims at rendering the method more robust towards prior mean parameter misspecification.
We test our approach against classical BO on a real-world problem from material science and observe PROBO to converge faster.
arXiv Detail & Related papers (2021-11-16T08:45:39Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.