IDOL: Inertial Deep Orientation-Estimation and Localization
- URL: http://arxiv.org/abs/2102.04024v1
- Date: Mon, 8 Feb 2021 06:41:47 GMT
- Title: IDOL: Inertial Deep Orientation-Estimation and Localization
- Authors: Scott Sun, Dennis Melamed, Kris Kitani
- Abstract summary: Many smartphone applications use inertial measurement units (IMUs) to sense movement, but the use of these sensors for pedestrian localization can be challenging.
Recent data-driven inertial odometry approaches have demonstrated the increasing feasibility of inertial navigation.
We present a two-stage, data-driven pipeline using a commodity smartphone that first estimates device orientations and then estimates device position.
- Score: 18.118289074111946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many smartphone applications use inertial measurement units (IMUs) to sense
movement, but the use of these sensors for pedestrian localization can be
challenging due to their noise characteristics. Recent data-driven inertial
odometry approaches have demonstrated the increasing feasibility of inertial
navigation. However, they still rely upon conventional smartphone orientation
estimates that they assume to be accurate, while in fact these orientation
estimates can be a significant source of error. To address the problem of
inaccurate orientation estimates, we present a two-stage, data-driven pipeline
using a commodity smartphone that first estimates device orientations and then
estimates device position. The orientation module relies on a recurrent neural
network and Extended Kalman Filter to obtain orientation estimates that are
used to then rotate raw IMU measurements into the appropriate reference frame.
The position module then passes those measurements through another recurrent
network architecture to perform localization. Our proposed method outperforms
state-of-the-art methods in both orientation and position error on a large
dataset we constructed that contains 20 hours of pedestrian motion across 3
buildings and 15 subjects.
Related papers
- DoorINet: A Deep-Learning Inertial Framework for Door-Mounted IoT
Applications [2.915868985330569]
We propose DoorINet, an end-to-end deep-learning framework to calculate the heading angle from door-mounted, low-cost inertial sensors without using magnetometers.
We record a unique dataset containing 391 minutes of accelerometer and gyroscope measurements and corresponding ground-truth heading angle.
arXiv Detail & Related papers (2024-01-24T05:28:29Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - RIOT: Recursive Inertial Odometry Transformer for Localisation from
Low-Cost IMU Measurements [5.770538064283154]
We present two end-to-end frameworks for pose invariant deep inertial odometry that utilise self-attention to capture both spatial features and long-range dependencies in inertial data.
We evaluate our approaches against a custom 2-layer Gated Recurrent Unit, trained in the same manner on the same data, and tested each approach on a number of different users, devices and activities.
arXiv Detail & Related papers (2023-03-03T00:20:01Z) - Deep Learning for Inertial Sensor Alignment [1.9773109138840514]
We propose a data-driven approach to learn the yaw mounting angle of a smartphone equipped with an inertial measurement unit (IMU) and strapped to a car.
The proposed model uses only the accelerometer and gyroscope readings from an IMU as input.
The trained model is deployed on an Android device and evaluated in real-time to test the accuracy of the estimated yaw mounting angle.
arXiv Detail & Related papers (2022-12-10T07:50:29Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs)
In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit ( CPU) which may be located in the cloud.
Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps.
arXiv Detail & Related papers (2022-02-01T20:27:46Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
We present a lightweight, tightly-coupled deep depth network and visual-inertial odometry system.
We provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction.
We show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
arXiv Detail & Related papers (2020-12-18T09:42:54Z) - TLIO: Tight Learned Inertial Odometry [43.17991168599939]
We propose a tightly-coupled Extended Kalman Filter framework for IMU-only state estimation.
We show that our network, trained with pedestrian data from a headset, can produce statistically consistent measurement and uncertainty.
arXiv Detail & Related papers (2020-07-06T03:13:34Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z) - Pedestrian orientation dynamics from high-fidelity measurements [65.06084067891364]
We propose a novel measurement method based on a deep neural architecture that we train on the basis of generic physical properties of the motion of pedestrians.
We show that our method is capable of estimating orientation with an error as low as 7.5 degrees.
This tool opens up new possibilities in the studies of human crowd dynamics where orientation is key.
arXiv Detail & Related papers (2020-01-14T07:08:31Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.