Seurat: From Moving Points to Depth
- URL: http://arxiv.org/abs/2504.14687v1
- Date: Sun, 20 Apr 2025 17:37:02 GMT
- Title: Seurat: From Moving Points to Depth
- Authors: Seokju Cho, Jiahui Huang, Seungryong Kim, Joon-Young Lee,
- Abstract summary: We propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories.<n>Our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
- Score: 66.65189052568209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate depth estimation from monocular videos remains challenging due to ambiguities inherent in single-view geometry, as crucial depth cues like stereopsis are absent. However, humans often perceive relative depth intuitively by observing variations in the size and spacing of objects as they move. Inspired by this, we propose a novel method that infers relative depth by examining the spatial relationships and temporal evolution of a set of tracked 2D trajectories. Specifically, we use off-the-shelf point tracking models to capture 2D trajectories. Then, our approach employs spatial and temporal transformers to process these trajectories and directly infer depth changes over time. Evaluated on the TAPVid-3D benchmark, our method demonstrates robust zero-shot performance, generalizing effectively from synthetic to real-world datasets. Results indicate that our approach achieves temporally smooth, high-accuracy depth predictions across diverse domains.
Related papers
- EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.
This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.
For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.
The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
arXiv Detail & Related papers (2025-03-14T13:15:54Z) - RDG-GS: Relative Depth Guidance with Gaussian Splatting for Real-time Sparse-View 3D Rendering [13.684624443214599]
We present RDG-GS, a novel sparse-view 3D rendering framework with Relative Depth Guidance based on 3D Gaussian Splatting.<n>The core innovation lies in utilizing relative depth guidance to refine the Gaussian field, steering it towards view-consistent spatial geometric representations.<n>Across extensive experiments on Mip-NeRF360, LLFF, DTU, and Blender, RDG-GS demonstrates state-of-the-art rendering quality and efficiency.
arXiv Detail & Related papers (2025-01-19T16:22:28Z) - DCPI-Depth: Explicitly Infusing Dense Correspondence Prior to Unsupervised Monocular Depth Estimation [17.99904937160487]
DCPI-Depth is a framework that incorporates all these innovative components and couples two bidirectional and collaborative streams.<n>It achieves state-of-the-art performance and generalizability across multiple public datasets, outperforming all existing prior arts.
arXiv Detail & Related papers (2024-05-27T08:55:17Z) - Toward Accurate Camera-based 3D Object Detection via Cascade Depth
Estimation and Calibration [20.82054596017465]
Recent camera-based 3D object detection is limited by the precision of transforming from image to 3D feature spaces.
This paper aims to address such a fundamental problem of camera-based 3D object detection: How to effectively learn depth information for accurate feature lifting and object localization.
arXiv Detail & Related papers (2024-02-07T14:21:26Z) - Depth-discriminative Metric Learning for Monocular 3D Object Detection [14.554132525651868]
We introduce a novel metric learning scheme that encourages the model to extract depth-discriminative features regardless of the visual attributes.
Our method consistently improves the performance of various baselines by 23.51% and 5.78% on average.
arXiv Detail & Related papers (2024-01-02T07:34:09Z) - Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
This paper explores the utilization of 3D perceptual features and multi-view geometry consistency to devise a high-precision self-supervised depth completion method.
Experiments on benchmark datasets of NYU-Depthv2 and VOID demonstrate that the proposed model achieves the state-of-the-art depth completion performance.
arXiv Detail & Related papers (2023-12-23T14:19:56Z) - On Robust Cross-View Consistency in Self-Supervised Monocular Depth Estimation [56.97699793236174]
We study two kinds of robust cross-view consistency in this paper.
We exploit the temporal coherence in both depth feature space and 3D voxel space for self-supervised monocular depth estimation.
Experimental results on several outdoor benchmarks show that our method outperforms current state-of-the-art techniques.
arXiv Detail & Related papers (2022-09-19T03:46:13Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.