論文の概要: Improved Brain Age Estimation with Slice-based Set Networks
- arxiv url: http://arxiv.org/abs/2102.04438v1
- Date: Mon, 8 Feb 2021 18:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 15:14:51.509624
- Title: Improved Brain Age Estimation with Slice-based Set Networks
- Title(参考訳): スライスベースセットネットワークによる脳年齢推定の改善
- Authors: Umang Gupta, Pradeep Lam, Greg Ver Steeg, Paul Thompson
- Abstract要約: 本稿では,脳波予測のための新しいアーキテクチャを提案する。
提案アーキテクチャは, ディープ2D-CNNモデルを用いて, それぞれの2次元スライスをMRIで符号化することによって機能する。
次に、セットネットワークまたは置換不変層を用いて、これらの2Dスライス符号化の情報を組み合わせる。
英国のBiobankデータセットを用いたBrainAGE予測問題の実験では、置換不変層を持つモデルは、他の最先端のアプローチと比較して、より高速にトレーニングし、より良い予測を提供することが示された。
- 参考スコア(独自算出の注目度): 16.211033577654902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning for neuroimaging data is a promising but challenging direction.
The high dimensionality of 3D MRI scans makes this endeavor compute and
data-intensive. Most conventional 3D neuroimaging methods use 3D-CNN-based
architectures with a large number of parameters and require more time and data
to train. Recently, 2D-slice-based models have received increasing attention as
they have fewer parameters and may require fewer samples to achieve comparable
performance. In this paper, we propose a new architecture for BrainAGE
prediction. The proposed architecture works by encoding each 2D slice in an MRI
with a deep 2D-CNN model. Next, it combines the information from these 2D-slice
encodings using set networks or permutation invariant layers. Experiments on
the BrainAGE prediction problem, using the UK Biobank dataset, showed that the
model with the permutation invariant layers trains faster and provides better
predictions compared to other state-of-the-art approaches.
- Abstract(参考訳): 神経画像データのディープラーニングは、有望だが挑戦的な方向だ。
3D MRIスキャンの高次元性は、この取り組みを計算とデータ集約にします。
従来の3Dニューロイメージング手法では、多数のパラメータを持つ3D-CNNベースのアーキテクチャを使用し、トレーニングにより多くの時間とデータを必要とする。
近年、2dスライスベースのモデルは、パラメータが少なく、同等の性能を達成するためにサンプルが少ないため、注目を集めている。
本稿では,Brainage予測のための新しいアーキテクチャを提案する。
提案されたアーキテクチャは、各2DスライスをMRIに深い2D-CNNモデルでエンコードすることで機能する。
次に、セットネットワークまたは置換不変層を用いて、これらの2Dスライス符号化の情報を組み合わせる。
ブリティッシュ・バイオバンク・データセットを用いたブレネージ予測問題の実験は、置換不変層を持つモデルがより高速に学習し、他の最先端のアプローチよりも優れた予測を提供することを示した。
関連論文リスト
- Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
現在の異常検出法は, 基準産業データより優れているが, 「正常」 と「異常」の定義の相違により, 医療データに苦慮している。
我々は,ImageNet上で事前学習し,MRIデータセットを2次元スライス特徴抽出器として微調整したモデルを用いたSimple Slice-based Network (SimpleSliceNet) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T17:20:56Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Transferring Models Trained on Natural Images to 3D MRI via Position
Encoded Slice Models [14.42534860640976]
2D-Slice-CNNアーキテクチャは、すべてのMRIスライスを2Dエンコーダに埋め込む。
トレーニング済みのモデルが2Dエンコーダとして機能できるという知見を得て、2DエンコーダをImageNetで初期化し、2つのニューロイメージングタスクでそれらを上回り、スクラッチからトレーニングする。
論文 参考訳(メタデータ) (2023-03-02T18:52:31Z) - Learning 3D Representations from 2D Pre-trained Models via
Image-to-Point Masked Autoencoders [52.91248611338202]
I2P-MAEという名前のイメージ・ツー・ポイント・マスケッド・オートエンコーダを用いて,2次元事前学習モデルから優れた3次元表現を得る方法を提案する。
自己教師付き事前学習により、よく学習された2D知識を利用して、3Dマスクによる自動エンコーディングをガイドする。
I2P-MAEは最先端の90.11%の精度、+3.68%の精度で第2ベストに到達し、より優れた転送能力を示す。
論文 参考訳(メタデータ) (2022-12-13T17:59:20Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
我々は2+1Dフレームワークで3Dデータを処理し、巨大なImageNetデータセット上に事前トレーニングされた強力な2D畳み込みニューラルネットワーク(CNN)ネットワークを利用して3Dニューロイメージング認識を実現することを提案する。
特に3次元磁気共鳴イメージング(MRI)の計測値は、隣接するボクセル位置に応じて2次元スライスに分解される。
グローバルプーリングは、アクティベーションパターンが機能マップ上にわずかに分散されているため、冗長な情報を除去するために適用される。
2次元CNNモデルにより処理されていない3次元の文脈情報を集約するために,チャネルワイドおよびスライスワイズ畳み込みを提案する。
論文 参考訳(メタデータ) (2022-11-21T15:22:59Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - Attention-Guided Version of 2D UNet for Automatic Brain Tumor
Segmentation [2.371982686172067]
グリオーマは脳腫瘍の中でも最も一般的で攻撃的であり、高い成績で寿命が短くなる。
深層畳み込みニューラルネットワーク(DCNN)は脳腫瘍のセグメンテーションにおいて顕著な性能を発揮している。
しかし, グリオーマの強度や外観に変化があるため, この課題は依然として困難である。
論文 参考訳(メタデータ) (2020-04-04T20:09:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。