論文の概要: A modular framework for extreme weather generation
- arxiv url: http://arxiv.org/abs/2102.04534v1
- Date: Fri, 5 Feb 2021 15:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 15:16:52.379403
- Title: A modular framework for extreme weather generation
- Title(参考訳): 極端な気象発生のためのモジュラーフレームワーク
- Authors: Bianca Zadrozny, Campbell D. Watson, Daniela Szwarcman, Daniel
Civitarese, Dario Oliveira, Eduardo Rodrigues, Jorge Guevara
- Abstract要約: 機械学習技術はレジリエンス計画において重要な役割を果たす可能性がある。
本稿では、極端気象イベントシナリオを生成するために、交換可能なコンポーネントに依存するモジュラーフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extreme weather events have an enormous impact on society and are expected to
become more frequent and severe with climate change. In this context,
resilience planning becomes crucial for risk mitigation and coping with these
extreme events. Machine learning techniques can play a critical role in
resilience planning through the generation of realistic extreme weather event
scenarios that can be used to evaluate possible mitigation actions. This paper
proposes a modular framework that relies on interchangeable components to
produce extreme weather event scenarios. We discuss possible alternatives for
each of the components and show initial results comparing two approaches on the
task of generating precipitation scenarios.
- Abstract(参考訳): 極端な気象イベントは社会に大きな影響を与え、気候変動により頻繁で重大になることが期待されています。
この文脈では、レジリエンス・プランニングはリスク軽減とこのような極端な出来事への対処に不可欠である。
機械学習技術は、可能な緩和行動を評価するために使用できる現実的な極端な気象イベントシナリオの生成を通じて、レジリエンス計画において重要な役割を果たします。
本稿では,極度の気象イベントシナリオを生成するために交換可能なコンポーネントに依存するモジュール化フレームワークを提案する。
各コンポーネントの代替案について検討し,降水シナリオの生成タスクにおける2つのアプローチを比較した最初の結果を示す。
関連論文リスト
- ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models [13.740208247043258]
天気予報の基礎モデルであるClimateLLMを提案する。
時間的および空間横断的な協調フレームワークを通じて、時間的依存関係をキャプチャする。
周波数分解と大言語モデルを統合し、空間的および時間的モデリングを強化する。
論文 参考訳(メタデータ) (2025-02-16T09:57:50Z) - Deep Learning for Hydroelectric Optimization: Generating Long-Term River Discharge Scenarios with Ensemble Forecasts from Global Circulation Models [0.0]
水力発電は世界のエネルギーマトリックスの重要な構成要素であり、特にブラジルのような国々ではエネルギー供給の大半を占めている。
しかし、気候の変動により本質的に不確実な河川流出への強い依存は、大きな課題を招いている。
伝統的に、統計モデルは、エネルギー最適化において河川の排出を表すために使われてきたが、しかしながら、これらのモデルは、気候の挙動が構造的に変化しているため、現実的なシナリオを生み出すことがますます困難になっている。
論文 参考訳(メタデータ) (2024-12-16T16:37:27Z) - Schema-Guided Culture-Aware Complex Event Simulation with Multi-Agent Role-Play [69.57968387772428]
自然災害や社会と政治の対立といった複雑な出来事は、政府や社会からの迅速な対応を必要とする。
我々は、ドメイン知識を表すイベントスキーマの両方でガイドされる、制御可能な複雑なニュースイベントシミュレータを開発した。
ジオディバース・コモンセンスとカルチャー・ノルム・アウェア・ナレッジ・エンハンスメント・コンポーネントを導入する。
論文 参考訳(メタデータ) (2024-10-24T17:21:43Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - A locally time-invariant metric for climate model ensemble predictions
of extreme risk [8.347190888362194]
本研究では,極度のシミュレーションを評価することを目的とした,気候モデルシミュレーションを評価するための局所的時間不変手法を提案する。
ナイロビの極端な暑さの予測における提案手法の挙動を考察し,8つの都市で比較検討を行った。
論文 参考訳(メタデータ) (2022-11-26T16:41:50Z) - A Multi-Scale Deep Learning Framework for Projecting Weather Extremes [3.3598755777055374]
気象の極端は社会と経済の大きな危険であり、数千人の命と毎年数十億ドルの損害を被っている。
現在、気候予測の主要なツールである一般循環モデル(GCM)は、気象極端を正確に特徴づけることができない。
本稿では,GCMの偏差を粗いスケールで観測することで,その出力の低次統計値とテール統計値とを一致させて補正する多分解能深層学習フレームワークを提案する。
提案手法を用いて、観測的大気再分析を用いて補正された単純なGCMを用いて、西欧の気候の統計的に現実的な現実化を生成する。
論文 参考訳(メタデータ) (2022-10-21T17:47:05Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
実画像上でのリアルな洪水をシミュレートする手法を提案する。
本研究では、教師なし領域適応と条件付き画像生成のためのシミュレーションデータと実データの両方を活用するモデルであるClimateGANを提案する。
論文 参考訳(メタデータ) (2021-10-06T15:54:57Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。