Physics-informed neural networks with hard constraints for inverse
design
- URL: http://arxiv.org/abs/2102.04626v1
- Date: Tue, 9 Feb 2021 03:18:15 GMT
- Title: Physics-informed neural networks with hard constraints for inverse
design
- Authors: Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo,
Steven G. Johnson
- Abstract summary: We propose a new deep learning method -- physics-informed neural networks with hard constraints (hPINNs) -- for solving topology optimization.
We demonstrate the effectiveness of hPINN for a holography problem in optics and a fluid problem of Stokes flow.
- Score: 3.8191831921441337
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inverse design arises in a variety of areas in engineering such as acoustic,
mechanics, thermal/electronic transport, electromagnetism, and optics. Topology
optimization is a major form of inverse design, where we optimize a designed
geometry to achieve targeted properties and the geometry is parameterized by a
density function. This optimization is challenging, because it has a very high
dimensionality and is usually constrained by partial differential equations
(PDEs) and additional inequalities. Here, we propose a new deep learning method
-- physics-informed neural networks with hard constraints (hPINNs) -- for
solving topology optimization. hPINN leverages the recent development of PINNs
for solving PDEs, and thus does not rely on any numerical PDE solver. However,
all the constraints in PINNs are soft constraints, and hence we impose hard
constraints by using the penalty method and the augmented Lagrangian method. We
demonstrate the effectiveness of hPINN for a holography problem in optics and a
fluid problem of Stokes flow. We achieve the same objective as conventional
PDE-constrained optimization methods based on adjoint methods and numerical PDE
solvers, but find that the design obtained from hPINN is often simpler and
smoother for problems whose solution is not unique. Moreover, the
implementation of inverse design with hPINN can be easier than that of
conventional methods.
Related papers
- General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
We propose the General-Kindred Physics-Informed Neural Network (GKPINN) for solving Singular Perturbation Differential Equations (SPDEs)
This approach utilizes prior knowledge of the boundary layer from the equation and establishes a novel network to assist PINN in approxing the boundary layer.
The research findings underscore the exceptional performance of our novel approach, GKPINN, which delivers a remarkable enhancement in reducing the $L$ error by two to four orders of magnitude compared to the established PINN methodology.
arXiv Detail & Related papers (2024-08-27T02:03:22Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
We introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems.
CoRes consistently outperforms competing methods in solving a broad range of benchmark problems.
We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.
arXiv Detail & Related papers (2024-01-07T14:09:42Z) - Bi-level Physics-Informed Neural Networks for PDE Constrained
Optimization using Broyden's Hypergradients [29.487375792661005]
We present a novel bi-level optimization framework to solve PDE constrained optimization problems.
For the inner loop optimization, we adopt PINNs to solve the PDE constraints only.
For the outer loop, we design a novel method by using Broyden'simat method based on the Implicit Function Theorem.
arXiv Detail & Related papers (2022-09-15T06:21:24Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - Speeding up Computational Morphogenesis with Online Neural Synthetic
Gradients [51.42959998304931]
A wide range of modern science and engineering applications are formulated as optimization problems with a system of partial differential equations (PDEs) as constraints.
These PDE-constrained optimization problems are typically solved in a standard discretize-then-optimize approach.
We propose a general framework to speed up PDE-constrained optimization using online neural synthetic gradients (ONSG) with a novel two-scale optimization scheme.
arXiv Detail & Related papers (2021-04-25T22:43:51Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.