On the Universal Transformation of Data-Driven Models to Control Systems
- URL: http://arxiv.org/abs/2102.04722v1
- Date: Tue, 9 Feb 2021 09:33:03 GMT
- Title: On the Universal Transformation of Data-Driven Models to Control Systems
- Authors: Sebastian Peitz and Katharina Bieker
- Abstract summary: We present a universal framework to transform arbitrary predictive models into control systems.
The advantages of our approach are a linear increase in data requirements with respect to the control dimension.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As in almost every other branch of science, the major advances in data
science and machine learning have also resulted in significant improvements
regarding the modeling and simulation of nonlinear dynamical systems. It is
nowadays possible to make accurate medium to long-term predictions of highly
complex systems such as the weather, the dynamics within a nuclear fusion
reactor, of disease models or the stock market in a very efficient manner. In
many cases, predictive methods are advertised to ultimately be useful for
control, as the control of high-dimensional nonlinear systems is an engineering
grand challenge with huge potential in areas such as clean and efficient energy
production, or the development of advanced medical devices. However, the
question of how to use a predictive model for control is often left unanswered
due to the associated challenges, namely a significantly higher system
complexity, the requirement of much larger data sets and an increased and often
problem-specific modeling effort. To solve these issues, we present a universal
framework (which we call QuaSiModO:
Quantization-Simulation-Modeling-Optimization) to transform arbitrary
predictive models into control systems and use them for feedback control. The
advantages of our approach are a linear increase in data requirements with
respect to the control dimension, performance guarantees that rely exclusively
on the accuracy of the predictive model, and only little prior knowledge
requirements in control theory to solve complex control problems. In particular
the latter point is of key importance to enable a large number of researchers
and practitioners to exploit the ever increasing capabilities of predictive
models for control in a straight-forward and systematic fashion.
Related papers
- Data-Driven Predictive Control of Nonholonomic Robots Based on a Bilinear Koopman Realization: Data Does Not Replace Geometry [0.5277756703318045]
This paper examines how EDMD models can be integrated into predictive controllers for nonholonomic mobile robots.
Using only real-world measurement data, it is shown in both simulations and hardware experiments that the surrogate models enable high-precision predictive controllers.
arXiv Detail & Related papers (2024-11-11T18:08:17Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
We present approximated GPDMs which are Markov and analyze their control theoretical properties.
The outcomes are illustrated with numerical examples that show the power of the approximated models.
arXiv Detail & Related papers (2020-06-25T16:51:17Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.