Data-Driven Predictive Control of Nonholonomic Robots Based on a Bilinear Koopman Realization: Data Does Not Replace Geometry
- URL: http://arxiv.org/abs/2411.07192v1
- Date: Mon, 11 Nov 2024 18:08:17 GMT
- Title: Data-Driven Predictive Control of Nonholonomic Robots Based on a Bilinear Koopman Realization: Data Does Not Replace Geometry
- Authors: Mario Rosenfelder, Lea Bold, Hannes Eschmann, Peter Eberhard, Karl Worthmann, Henrik Ebel,
- Abstract summary: This paper examines how EDMD models can be integrated into predictive controllers for nonholonomic mobile robots.
Using only real-world measurement data, it is shown in both simulations and hardware experiments that the surrogate models enable high-precision predictive controllers.
- Score: 0.5277756703318045
- License:
- Abstract: Advances in machine learning and the growing trend towards effortless data generation in real-world systems has led to an increasing interest for data-inferred models and data-based control in robotics. It seems appealing to govern robots solely based on data, bypassing the traditional, more elaborate pipeline of system modeling through first-principles and subsequent controller design. One promising data-driven approach is the Extended Dynamic Mode Decomposition (EDMD) for control-affine systems, a system class which contains many vehicles and machines of immense practical importance including, e.g., typical wheeled mobile robots. EDMD can be highly data-efficient, computationally inexpensive, can deal with nonlinear dynamics as prevalent in robotics and mechanics, and has a sound theoretical foundation rooted in Koopman theory. On this background, this present paper examines how EDMD models can be integrated into predictive controllers for nonholonomic mobile robots. In addition to the conventional kinematic mobile robot, we also cover the complete data-driven control pipeline - from data acquisition to control design - when the robot is not treated in terms of first-order kinematics but in a second-order manner, allowing to account for actuator dynamics. Using only real-world measurement data, it is shown in both simulations and hardware experiments that the surrogate models enable high-precision predictive controllers in the studied cases. However, the findings raise significant concerns about purely data-centric approaches that overlook the underlying geometry of nonholonomic systems, showing that, for nonholonomic systems, some geometric insight seems necessary and cannot be easily compensated for with large amounts of data.
Related papers
- Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks [4.146337610044239]
We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency.
The amount of expensive real-world training data is reduced to a minimum - one dataset in one system domain.
The prediction speed of an accurate FP model is improved with the PINN by up to a factor of 466 at slightly reduced accuracy.
arXiv Detail & Related papers (2025-02-04T01:16:33Z) - VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidMan is a novel framework that employs a two-stage training mechanism to enhance stability and improve data utilization efficiency.
Our framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset.
arXiv Detail & Related papers (2024-11-14T03:13:26Z) - RoboPack: Learning Tactile-Informed Dynamics Models for Dense Packing [38.97168020979433]
We introduce an approach that combines visual and tactile sensing for robotic manipulation by learning a neural, tactile-informed dynamics model.
Our proposed framework, RoboPack, employs a recurrent graph neural network to estimate object states.
We demonstrate our approach on a real robot equipped with a compliant Soft-Bubble tactile sensor on non-prehensile manipulation and dense packing tasks.
arXiv Detail & Related papers (2024-07-01T16:08:37Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - Sample Efficient Dynamics Learning for Symmetrical Legged
Robots:Leveraging Physics Invariance and Geometric Symmetries [14.848950116410231]
This paper proposes a novel approach for learning dynamics leveraging the symmetry in the underlying robotic system.
Existing frameworks that represent all data in vector space fail to consider the structured information of the robot.
arXiv Detail & Related papers (2022-10-13T19:57:46Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - On the Universal Transformation of Data-Driven Models to Control Systems [0.0]
We present a universal framework to transform arbitrary predictive models into control systems.
The advantages of our approach are a linear increase in data requirements with respect to the control dimension.
arXiv Detail & Related papers (2021-02-09T09:33:03Z) - Structured Mechanical Models for Robot Learning and Control [38.52004843488286]
Black-box neural networks suffer from data-inefficiency and the difficulty to incorporate prior knowledge.
We introduce Structured Mechanical Models that are data-efficient, easily amenable to prior knowledge, and easily usable with model-based control techniques.
We demonstrate that they generalize better from limited data and yield more reliable model-based controllers on a variety of simulated robotic domains.
arXiv Detail & Related papers (2020-04-21T21:12:03Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.