論文の概要: Diverse Single Image Generation with Controllable Global Structure
though Self-Attention
- arxiv url: http://arxiv.org/abs/2102.04780v1
- Date: Tue, 9 Feb 2021 11:52:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-10 14:53:04.270188
- Title: Diverse Single Image Generation with Controllable Global Structure
though Self-Attention
- Title(参考訳): 自己着脱型制御可能なグローバル構造を持つ多種多様な単一画像生成
- Authors: Sutharsan Mahendren, Chamira Edussooriya, Ranga Rodrigo
- Abstract要約: 我々は、生成的敵ネットワークを用いて、グローバルなコンテキストを必要とする画像を生成する方法を示す。
我々の結果は、特にグローバルなコンテキストを必要とする画像の生成において、最先端技術よりも視覚的に優れている。
ピクセルの平均標準偏差を用いて測定した画像生成の多様性も良好である。
- 参考スコア(独自算出の注目度): 1.2522889958051286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image generation from a single image using generative adversarial networks is
quite interesting due to the realism of generated images. However, recent
approaches need improvement for such realistic and diverse image generation,
when the global context of the image is important such as in face, animal, and
architectural image generation. This is mainly due to the use of fewer
convolutional layers for mainly capturing the patch statistics and, thereby,
not being able to capture global statistics very well. We solve this problem by
using attention blocks at selected scales and feeding a random Gaussian blurred
image to the discriminator for training. Our results are visually better than
the state-of-the-art particularly in generating images that require global
context. The diversity of our image generation, measured using the average
standard deviation of pixels, is also better.
- Abstract(参考訳): 生成した画像のリアリズムのため、生成逆ネットワークを用いた単一の画像からの画像生成は非常に興味深い。
しかし、近年のアプローチでは、顔、動物、建築的な画像生成など、画像のグローバルコンテキストが重要である場合に、このような現実的な多様な画像生成の改善が必要である。
これは主に、パッチ統計を主に取得するために、畳み込み層が少ないためであり、それゆえに、グローバル統計をうまく取得できないためである。
本研究では,選択した尺度で注目ブロックを用いて,ランダムなガウス像を識別器に供給することで,この問題を解決する。
我々の結果は、特にグローバルなコンテキストを必要とする画像の生成において、最先端技術よりも視覚的に優れている。
ピクセルの平均標準偏差を使用して測定された画像生成の多様性も優れています。
関連論文リスト
- RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - SCONE-GAN: Semantic Contrastive learning-based Generative Adversarial
Network for an end-to-end image translation [18.93434486338439]
SCONE-GANはリアルで多様な風景画像を生成する学習に有効であることが示されている。
より現実的で多様な画像生成のために、スタイル参照画像を導入します。
画像から画像への変換と屋外画像のスタイリングのための提案アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-11-07T10:29:16Z) - Traditional Classification Neural Networks are Good Generators: They are
Competitive with DDPMs and GANs [104.72108627191041]
従来のニューラルネットワーク分類器は、最先端の生成モデルに匹敵する高品質な画像を生成することができることを示す。
マスクをベースとした再構成モジュールを提案し, 意味的勾配を意識し, 可視画像の合成を行う。
また,本手法は,画像テキスト基盤モデルに関して,テキスト・画像生成にも適用可能であることを示す。
論文 参考訳(メタデータ) (2022-11-27T11:25:35Z) - Dual Pyramid Generative Adversarial Networks for Semantic Image
Synthesis [94.76988562653845]
セマンティック画像合成の目標は、セマンティックラベルマップからフォトリアリスティック画像を生成することである。
しかし、現在の最先端のアプローチは、さまざまなスケールで画像で現実的なオブジェクトを生成するのに依然として苦労している。
本研究では,空間適応型正規化ブロックの条件付けを各スケールで同時に学習するDual Pyramid Generative Adversarial Network (DP-GAN)を提案する。
論文 参考訳(メタデータ) (2022-10-08T18:45:44Z) - Reinforcing Generated Images via Meta-learning for One-Shot Fine-Grained
Visual Recognition [36.02360322125622]
生成した画像と原画像を組み合わせるメタラーニングフレームワークを提案し,その結果の「ハイブリッド」訓練画像がワンショット学習を改善する。
実験では,1ショットのきめ細かい画像分類ベンチマークにおいて,ベースラインよりも一貫した改善が示された。
論文 参考訳(メタデータ) (2022-04-22T13:11:05Z) - Progressively Unfreezing Perceptual GAN [28.330940021951438]
画像生成にはGAN(Generative Adversarial Network)が広く用いられているが、生成した画像はテクスチャの詳細が欠如している。
本稿では,テクスチャの細かい画像を生成するための一般的なフレームワークであるProgressively Unfreezing Perceptual GAN(PUPGAN)を提案する。
論文 参考訳(メタデータ) (2020-06-18T03:12:41Z) - Enhanced Residual Networks for Context-based Image Outpainting [0.0]
深いモデルは、保持された情報を通してコンテキストや外挿を理解するのに苦労する。
現在のモデルでは、生成的敵ネットワークを使用して、局所的な画像特徴の整合性が欠如し、偽のように見える結果を生成する。
本稿では,局所的・大域的判別器の使用と,ネットワークの符号化部における残差ブロックの追加という,この問題を改善するための2つの方法を提案する。
論文 参考訳(メタデータ) (2020-05-14T05:14:26Z) - A U-Net Based Discriminator for Generative Adversarial Networks [86.67102929147592]
GAN(Generative Adversarial Network)のための代替U-Netベースの識別器アーキテクチャを提案する。
提案アーキテクチャにより,合成画像のグローバルコヒーレンスを維持しつつ,画素単位の詳細なフィードバックを生成元に提供することができる。
斬新な判別器は、標準分布と画像品質の指標の観点から、最先端の技術を向上する。
論文 参考訳(メタデータ) (2020-02-28T11:16:54Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z) - Supervised and Unsupervised Learning of Parameterized Color Enhancement [112.88623543850224]
我々は、教師なし学習と教師なし学習の両方を用いて、画像翻訳タスクとしての色強調の問題に取り組む。
我々は,MIT-Adobe FiveKベンチマークにおいて,教師付き(ペアデータ)と教師なし(ペアデータ)の2つの画像強調手法と比較して,最先端の結果が得られた。
20世紀初頭の写真や暗黒ビデオフレームに応用することで,本手法の一般化能力を示す。
論文 参考訳(メタデータ) (2019-12-30T13:57:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。