論文の概要: Broader terms curriculum mapping: Using natural language processing and
visual-supported communication to create representative program planning
experiences
- arxiv url: http://arxiv.org/abs/2102.04811v2
- Date: Wed, 10 Feb 2021 09:05:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-11 12:10:03.235818
- Title: Broader terms curriculum mapping: Using natural language processing and
visual-supported communication to create representative program planning
experiences
- Title(参考訳): 広義のカリキュラムマッピング:自然言語処理と視覚支援コミュニケーションを用いて代表的プログラム計画体験を作成する
- Authors: Rog\'erio Duarte, \^Angela Lacerda Nobre, Fernando Pimentel, Marc
Jacquinet
- Abstract要約: 学部と非学部間のコミュニケーションの困難さは、未発見のコラボレーションの可能性を秘めている。
本稿では,プログラム計画表現の普遍的,自己説明的,権限付与的な提供方法を提案する。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accreditation bodies call for curriculum development processes open to all
stakeholders, reflecting viewpoints of students, industry, university faculty
and society. However, communication difficulties between faculty and
non-faculty groups leave unexplored an immense collaboration potential. Using
classification of learning objectives, natural language processing, and data
visualization, this paper presents a method to deliver program plan
representations that are universal, self-explanatory, and empowering. A simple
example shows how the method contributes to representative program planning
experiences and a case study is used to confirm the method's accuracy and
utility.
- Abstract(参考訳): 認定機関は、学生、産業、大学教員、社会の視点を反映し、すべてのステークホルダーに開かれたカリキュラム開発プロセスを求めます。
しかし、学部と非学部のコミュニケーションの難しさは、途方もないコラボレーションの可能性を残します。
本論文では,学習目的,自然言語処理,データ可視化の分類を用いて,普遍的,自己説明的,権限のあるプログラム計画表現を提供する手法を提案する。
簡単な例として、この手法が代表的なプログラム計画経験にどのように寄与するかを示し、その方法の正確性と有用性を確認するためにケーススタディが使用される。
関連論文リスト
- De-fine: Decomposing and Refining Visual Programs with Auto-Feedback [75.62712247421146]
De-fineは、複雑なタスクを単純なサブタスクに分解し、オートフィードバックを通じてプログラムを洗練する、トレーニング不要のフレームワークである。
様々な視覚的タスクに対する我々の実験は、De-fineがより堅牢なプログラムを生成することを示している。
論文 参考訳(メタデータ) (2023-11-21T06:24:09Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
社会学習は、専門家からのヒントを使って、異質なポリシーを整列し、サンプルの複雑さを減らし、部分的に観察可能なタスクを解決する。
本稿では,情報ボトルネックに基づく教師なし手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T03:23:27Z) - Pragmatics in Language Grounding: Phenomena, Tasks, and Modeling
Approaches [28.47300996711215]
人々は文字通りの言葉以上の意味を豊かにするためにコンテキストに大きく依存します。
人とうまく対話するためには、ユーザー向け人工知能システムは実用的スキルを身につける必要がある。
論文 参考訳(メタデータ) (2022-11-15T18:21:46Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
自己教師付き表現学習手法は、大きな注釈付きデータセットを必要とせずに強力な機能学習を提供することを目的としている。
本稿では、この活気ある領域について、鍵となる概念、アプローチの4つの主要なファミリーと関連する技術の状態、そして、データの多様性に自己監督手法を適用する方法について紹介する。
論文 参考訳(メタデータ) (2021-10-18T13:51:22Z) - ProTo: Program-Guided Transformer for Program-Guided Tasks [59.34258016795216]
我々は,学習者が与えられたタスク仕様に基づいて所定のプログラムを実行することを要求されるプログラム誘導タスクを定式化する。
本稿では,プログラムの意味的ガイダンスと構造的ガイダンスを統合したProTo(Proto)を提案する。
ProToは学習された潜在空間でプログラムを実行し、従来のニューラルシンボリックアプローチよりも強力な表現能力を持っている。
論文 参考訳(メタデータ) (2021-10-02T13:46:32Z) - Learning to Improve Representations by Communicating About Perspectives [0.0]
本稿では,多数のオートエンコーダからなるミニマルアーキテクチャを提案する。
提案したアーキテクチャは整列表現の出現を許容することを示す。
その結果、主観的パースペクティブからのコミュニケーションが、マルチエージェントシステムにおけるより抽象的な表現の獲得につながることを示す。
論文 参考訳(メタデータ) (2021-09-20T09:30:13Z) - Visual Probing: Cognitive Framework for Explaining Self-Supervised Image
Representations [12.485001250777248]
近年,画像表現学習のための自己教師付き手法が,完全教師付き競技者に対して,同等以上の結果を提供するようになった。
そこで本研究では,自己教師型モデルを説明するための新しい視覚探索フレームワークを提案する。
自己指導型表現の文脈において,これらのアナログの有効性と適用性を示す。
論文 参考訳(メタデータ) (2021-06-21T12:40:31Z) - Experience Grounds Language [185.73483760454454]
言語理解研究は、言語が記述する物理的世界と、それが促進する社会的相互作用とを関連づけることに失敗している。
テキストだけで訓練された後にタスクに取り組むための言語処理モデルの驚くべき効果にもかかわらず、成功した言語コミュニケーションは世界の共有経験に依存している。
論文 参考訳(メタデータ) (2020-04-21T16:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。