論文の概要: Experience Grounds Language
- arxiv url: http://arxiv.org/abs/2004.10151v3
- Date: Mon, 2 Nov 2020 00:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 05:46:43.975640
- Title: Experience Grounds Language
- Title(参考訳): 経験的根拠言語
- Authors: Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua
Bengio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan May,
Aleksandr Nisnevich, Nicolas Pinto, Joseph Turian
- Abstract要約: 言語理解研究は、言語が記述する物理的世界と、それが促進する社会的相互作用とを関連づけることに失敗している。
テキストだけで訓練された後にタスクに取り組むための言語処理モデルの驚くべき効果にもかかわらず、成功した言語コミュニケーションは世界の共有経験に依存している。
- 参考スコア(独自算出の注目度): 185.73483760454454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language understanding research is held back by a failure to relate language
to the physical world it describes and to the social interactions it
facilitates. Despite the incredible effectiveness of language processing models
to tackle tasks after being trained on text alone, successful linguistic
communication relies on a shared experience of the world. It is this shared
experience that makes utterances meaningful.
Natural language processing is a diverse field, and progress throughout its
development has come from new representational theories, modeling techniques,
data collection paradigms, and tasks. We posit that the present success of
representation learning approaches trained on large, text-only corpora requires
the parallel tradition of research on the broader physical and social context
of language to address the deeper questions of communication.
- Abstract(参考訳): 言語理解研究は、言語が記述する物理的世界と、それが促進する社会的相互作用とを関連づけることに失敗している。
テキストだけで訓練された後にタスクに取り組むための言語処理モデルの驚くべき効果にもかかわらず、成功した言語コミュニケーションは世界の共有経験に依存している。
発話を意味のあるものにするのは、この共有体験です。
自然言語処理は多様な分野であり、その開発を通しての進歩は、新しい表現論、モデリング技術、データ収集パラダイム、タスクから来ている。
大規模テキストのみのコーパスでトレーニングされた表現学習アプローチの現在の成功は、コミュニケーションのより深い問題に対処するために、言語のより広い物理的、社会的文脈に関する研究の並行的な伝統が必要であると仮定する。
関連論文リスト
- Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use [16.425032085699698]
具体的エージェントは、人間の言語を活用して、学習タスクの明示的または暗黙的な知識を得る能力を持つことが望ましい。
タスク学習を容易にするために、リッチ言語をどのように組み込むかは明確ではない。
本稿では,強化学習における言語入力の種類について検討する。
論文 参考訳(メタデータ) (2024-10-31T17:59:52Z) - Unveiling the pressures underlying language learning and use in neural networks, large language models, and humans: Lessons from emergent machine-to-machine communication [5.371337604556311]
本稿では,ニューラルエージェントと人間の言語行動のミスマッチが解決された3症例について概説する。
我々は、コミュニケーションの成功、生産努力、学習可能性、その他の心理・社会言語学的要因といった、言語学習と台頭のための重要なプレッシャーを識別する。
論文 参考訳(メタデータ) (2024-03-21T14:33:34Z) - Subspace Chronicles: How Linguistic Information Emerges, Shifts and
Interacts during Language Model Training [56.74440457571821]
我々は、構文、意味論、推論を含むタスクを、200万の事前学習ステップと5つのシードで分析する。
タスクや時間にまたがる重要な学習フェーズを特定し、その間にサブスペースが出現し、情報を共有し、後に専門化するために混乱する。
この結果は,モデル解釈可能性,マルチタスク学習,限られたデータからの学習に影響を及ぼす。
論文 参考訳(メタデータ) (2023-10-25T09:09:55Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z) - TalkUp: Paving the Way for Understanding Empowering Language [38.873632974397744]
この研究は言語学と社会心理学の文献から構築され、力のある言語を特徴付けるものを探究する。
われわれは、エンパワーメントのためにラベル付けされたRedditの投稿の新しいデータセットをクラウドソースした。
予備的な分析では、このデータセットが、エンパワーメントと非エンパワーメント言語をキャプチャする言語モデルをトレーニングするために使用できることを示している。
論文 参考訳(メタデータ) (2023-05-23T17:55:34Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Pragmatics in Language Grounding: Phenomena, Tasks, and Modeling
Approaches [28.47300996711215]
人々は文字通りの言葉以上の意味を豊かにするためにコンテキストに大きく依存します。
人とうまく対話するためには、ユーザー向け人工知能システムは実用的スキルを身につける必要がある。
論文 参考訳(メタデータ) (2022-11-15T18:21:46Z) - Knowledge Representation for Conceptual, Motivational, and Affective
Processes in Natural Language Communication [16.148949542951616]
本稿では,UGALRS(Unified General Autonomous and Language Reasoning System)フレームワークとCD+(Conceptual Representation Plus)スキームを利用して,言語によるソーシャルコミュニケーションが,知識表現スキームによってどのように支援されるかを説明する。
その主な貢献は、知能システムのための自然言語通信の目的のためにこれらの側面を結びつけるための知識表現と処理の一般的な枠組みを明確にすることである。
論文 参考訳(メタデータ) (2022-09-26T01:37:50Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。