DARE-SLAM: Degeneracy-Aware and Resilient Loop Closing in
Perceptually-Degraded Environments
- URL: http://arxiv.org/abs/2102.05117v1
- Date: Tue, 9 Feb 2021 20:37:17 GMT
- Title: DARE-SLAM: Degeneracy-Aware and Resilient Loop Closing in
Perceptually-Degraded Environments
- Authors: Kamak Ebadi, Matteo Palieri, Sally Wood, Curtis Padgett, Ali-akbar
Agha-mohammadi
- Abstract summary: A key requirement in autonomous exploration is building accurate and consistent maps of the unknown environment.
We present a degeneracy-aware and drift-resilient loop closing method to improve place recognition and resolve 3D location ambiguities.
- Score: 4.34118539186713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling fully autonomous robots capable of navigating and exploring
large-scale, unknown and complex environments has been at the core of robotics
research for several decades. A key requirement in autonomous exploration is
building accurate and consistent maps of the unknown environment that can be
used for reliable navigation. Loop closure detection, the ability to assert
that a robot has returned to a previously visited location, is crucial for
consistent mapping as it reduces the drift caused by error accumulation in the
estimated robot trajectory. Moreover, in multi-robot systems, loop closures
enable merging local maps obtained by a team of robots into a consistent global
map of the environment. In this paper, we present a degeneracy-aware and
drift-resilient loop closing method to improve place recognition and resolve 3D
location ambiguities for simultaneous localization and mapping (SLAM) in
GPS-denied, large-scale and perceptually-degraded environments. More
specifically, we focus on SLAM in subterranean environments (e.g., lava tubes,
caves, and mines) that represent examples of complex and ambiguous environments
where current methods have inadequate performance.
Related papers
- Language-guided Robust Navigation for Mobile Robots in Dynamically-changing Environments [26.209402619114353]
We develop an embodied AI system for human-in-the-loop navigation with a wheeled mobile robot.
We propose a method of monitoring the robot's current plan to detect changes in the environment that impact the intended trajectory of the robot.
This work can support applications like precision agriculture and construction, where persistent monitoring of the environment provides a human with information about the environment state.
arXiv Detail & Related papers (2024-09-28T21:30:23Z) - Outlier-Robust Long-Term Robotic Mapping Leveraging Ground Segmentation [1.7948767405202701]
I propose a robust long-term robotic mapping system that can work out of the box.
I propose (i) fast and robust ground segmentation to reject the presence of outliers.
I propose (ii)-robust registration with ground segmentation that encompasses the presence of gross outliers.
arXiv Detail & Related papers (2024-05-18T04:56:15Z) - PRISM-TopoMap: Online Topological Mapping with Place Recognition and Scan Matching [42.74395278382559]
This paper introduces PRISM-TopoMap -- a topological mapping method that maintains a graph of locally aligned locations.
The proposed method involves learnable multimodal place recognition paired with the scan matching pipeline for localization and loop closure.
We conduct a broad experimental evaluation of the suggested approach in a range of photo-realistic environments and on a real robot.
arXiv Detail & Related papers (2024-04-02T06:25:16Z) - NeuPAN: Direct Point Robot Navigation with End-to-End Model-based Learning [67.53972459080437]
This paper presents NeuPAN: a real-time, highly-accurate, robot-agnostic, and environment-invariant robot navigation solution.
Leveraging a tightly-coupled perception-locomotion framework, NeuPAN has two key innovations compared to existing approaches.
We evaluate NeuPAN on car-like robot, wheel-legged robot, and passenger autonomous vehicle, in both simulated and real-world environments.
arXiv Detail & Related papers (2024-03-11T15:44:38Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Indoor Point-to-Point Navigation with Deep Reinforcement Learning and
Ultra-wideband [1.6799377888527687]
Moving obstacles and non-line-of-sight occurrences can generate noisy and unreliable signals.
We show how a power-efficient point-to-point local planner, learnt with deep reinforcement learning (RL), can constitute a robust and resilient to noise short-range guidance system complete solution.
Our results show that the computational efficient end-to-end policy learnt in plain simulation, can provide a robust, scalable and at-the-edge low-cost navigation system solution.
arXiv Detail & Related papers (2020-11-18T12:30:36Z) - Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic
Simultaneous Localization and Mapping [57.173793973480656]
We present the first fully distributed multi-robot system for dense metric-semantic SLAM.
Our system, dubbed Kimera-Multi, is implemented by a team of robots equipped with visual-inertial sensors.
Kimera-Multi builds a 3D mesh model of the environment in real-time, where each face of the mesh is annotated with a semantic label.
arXiv Detail & Related papers (2020-11-08T21:38:12Z) - Autonomous Exploration Under Uncertainty via Deep Reinforcement Learning
on Graphs [5.043563227694137]
We consider an autonomous exploration problem in which a range-sensing mobile robot is tasked with accurately mapping the landmarks in an a priori unknown environment efficiently in real-time.
We propose a novel approach that uses graph neural networks (GNNs) in conjunction with deep reinforcement learning (DRL), enabling decision-making over graphs containing exploration information to predict a robot's optimal sensing action in belief space.
arXiv Detail & Related papers (2020-07-24T16:50:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.