Language-guided Robust Navigation for Mobile Robots in Dynamically-changing Environments
- URL: http://arxiv.org/abs/2409.19459v1
- Date: Sat, 28 Sep 2024 21:30:23 GMT
- Title: Language-guided Robust Navigation for Mobile Robots in Dynamically-changing Environments
- Authors: Cody Simons, Zhichao Liu, Brandon Marcus, Amit K. Roy-Chowdhury, Konstantinos Karydis,
- Abstract summary: We develop an embodied AI system for human-in-the-loop navigation with a wheeled mobile robot.
We propose a method of monitoring the robot's current plan to detect changes in the environment that impact the intended trajectory of the robot.
This work can support applications like precision agriculture and construction, where persistent monitoring of the environment provides a human with information about the environment state.
- Score: 26.209402619114353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop an embodied AI system for human-in-the-loop navigation with a wheeled mobile robot. We propose a direct yet effective method of monitoring the robot's current plan to detect changes in the environment that impact the intended trajectory of the robot significantly and then query a human for feedback. We also develop a means to parse human feedback expressed in natural language into local navigation waypoints and integrate it into a global planning system, by leveraging a map of semantic features and an aligned obstacle map. Extensive testing in simulation and physical hardware experiments with a resource-constrained wheeled robot tasked to navigate in a real-world environment validate the efficacy and robustness of our method. This work can support applications like precision agriculture and construction, where persistent monitoring of the environment provides a human with information about the environment state.
Related papers
- Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
We propose an agent-based framework for grounding robot policies to the current context.
The proposed framework is composed of a set of conversational agents designed for specific roles.
We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
We present a novel methodology that enhances the robot's interaction with different types of agents and obstacles.
This approach uses information about the entity types, improving collision avoidance and ensuring safer navigation.
We introduce a new reward function that penalizes the robot for collisions with different entities such as adults, bicyclists, children, and static obstacles.
arXiv Detail & Related papers (2024-08-26T11:16:03Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - ALAN: Autonomously Exploring Robotic Agents in the Real World [28.65531878636441]
ALAN is an autonomously exploring robotic agent that can perform tasks in the real world with little training and interaction time.
This is enabled by measuring environment change, which reflects object movement and ignores changes in the robot position.
We evaluate our approach on two different real-world play kitchen settings, enabling a robot to efficiently explore and discover manipulation skills.
arXiv Detail & Related papers (2023-02-13T18:59:09Z) - Semantic-Aware Environment Perception for Mobile Human-Robot Interaction [2.309914459672557]
We present a vision-based system for mobile robots to enable a semantic-aware environment without additional a-priori knowledge.
We deploy our system on a mobile humanoid robot that enables us to test our methods in real-world applications.
arXiv Detail & Related papers (2022-11-07T08:49:45Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Language Understanding for Field and Service Robots in a Priori Unknown
Environments [29.16936249846063]
This paper provides a novel learning framework that allows field and service robots to interpret and execute natural language instructions.
We use language as a "sensor" -- inferring spatial, topological, and semantic information implicit in natural language utterances.
We incorporate this distribution in a probabilistic language grounding model and infer a distribution over a symbolic representation of the robot's action space.
arXiv Detail & Related papers (2021-05-21T15:13:05Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
We propose a learning-based navigation system for reaching visually indicated goals.
We show that our system, which we call ViNG, outperforms previously-proposed methods for goal-conditioned reinforcement learning.
We demonstrate ViNG on a number of real-world applications, such as last-mile delivery and warehouse inspection.
arXiv Detail & Related papers (2020-12-17T18:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.