WOOD: Wasserstein-based Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2112.06384v1
- Date: Mon, 13 Dec 2021 02:35:15 GMT
- Title: WOOD: Wasserstein-based Out-of-Distribution Detection
- Authors: Yinan Wang, Wenbo Sun, Jionghua "Judy" Jin, Zhenyu "James" Kong,
Xiaowei Yue
- Abstract summary: Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
- Score: 6.163329453024915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training and test data for deep-neural-network-based classifiers are
usually assumed to be sampled from the same distribution. When part of the test
samples are drawn from a distribution that is sufficiently far away from that
of the training samples (a.k.a. out-of-distribution (OOD) samples), the trained
neural network has a tendency to make high confidence predictions for these OOD
samples. Detection of the OOD samples is critical when training a neural
network used for image classification, object detection, etc. It can enhance
the classifier's robustness to irrelevant inputs, and improve the system
resilience and security under different forms of attacks. Detection of OOD
samples has three main challenges: (i) the proposed OOD detection method should
be compatible with various architectures of classifiers (e.g., DenseNet,
ResNet), without significantly increasing the model complexity and requirements
on computational resources; (ii) the OOD samples may come from multiple
distributions, whose class labels are commonly unavailable; (iii) a score
function needs to be defined to effectively separate OOD samples from
in-distribution (InD) samples. To overcome these challenges, we propose a
Wasserstein-based out-of-distribution detection (WOOD) method. The basic idea
is to define a Wasserstein-distance-based score that evaluates the
dissimilarity between a test sample and the distribution of InD samples. An
optimization problem is then formulated and solved based on the proposed score
function. The statistical learning bound of the proposed method is investigated
to guarantee that the loss value achieved by the empirical optimizer
approximates the global optimum. The comparison study results demonstrate that
the proposed WOOD consistently outperforms other existing OOD detection
methods.
Related papers
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - Toward a Realistic Benchmark for Out-of-Distribution Detection [3.8038269045375515]
We introduce a comprehensive benchmark for OOD detection based on ImageNet and Places365.
Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties.
arXiv Detail & Related papers (2024-04-16T11:29:43Z) - Detecting Out-of-Distribution Samples via Conditional Distribution
Entropy with Optimal Transport [20.421338676377587]
We argue that empirical probability distributions that incorporate geometric information from both training samples and test inputs can be highly beneficial for OOD detection.
Within the framework of optimal transport, we propose a novel score function known as the emphconditional distribution entropy to quantify the uncertainty of a test input being an OOD sample.
arXiv Detail & Related papers (2024-01-22T07:07:32Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Multiple Testing Framework for Out-of-Distribution Detection [27.248375922343616]
We study the problem of Out-of-Distribution (OOD) detection, that is, detecting whether a learning algorithm's output can be trusted at inference time.
We propose a definition for the notion of OOD that includes both the input distribution and the learning algorithm, which provides insights for the construction of powerful tests for OOD detection.
arXiv Detail & Related papers (2022-06-20T00:56:01Z) - Energy-bounded Learning for Robust Models of Code [16.592638312365164]
In programming, learning code representations has a variety of applications, including code classification, code search, comment generation, bug prediction, and so on.
We propose the use of an energy-bounded learning objective function to assign a higher score to in-distribution samples and a lower score to out-of-distribution samples in order to incorporate such out-of-distribution samples into the training process of source code models.
arXiv Detail & Related papers (2021-12-20T06:28:56Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
This paper frames the Out Of Distribution (OOD) detection problem in Deep Neural Networks as a statistical hypothesis testing problem.
We build on this framework to suggest a novel OOD procedure based on low-order statistics.
Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters.
arXiv Detail & Related papers (2021-02-25T16:14:47Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
We propose an unsupervised method to detect OOD samples using a $k$-NN density estimate.
We leverage a recent insight about label smoothing, which we call the emphLabel Smoothed Embedding Hypothesis
We show that our proposal outperforms many OOD baselines and also provide new finite-sample high-probability statistical results.
arXiv Detail & Related papers (2021-02-09T21:04:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.