論文の概要: Heuristic Strategies for Solving Complex Interacting Stockpile Blending
Problem with Chance Constraints
- arxiv url: http://arxiv.org/abs/2102.05303v1
- Date: Wed, 10 Feb 2021 07:56:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 00:58:08.138443
- Title: Heuristic Strategies for Solving Complex Interacting Stockpile Blending
Problem with Chance Constraints
- Title(参考訳): 複雑に相互作用するストックパイルブレンディング問題に対する確率制約付きヒューリスティックな解法
- Authors: Yue Xie, Aneta Neumann, Frank Neumann
- Abstract要約: 本稿では,材料グレードの不確実性について考察し,信頼性の高い制約を確実にするために使用される確率制約を導入する。
ストックパイルブレンディング問題と確率制約に対処するため, 2つの補修演算子を組み合わせた微分進化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 14.352521012951865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heuristic algorithms have shown a good ability to solve a variety of
optimization problems. Stockpile blending problem as an important component of
the mine scheduling problem is an optimization problem with continuous search
space containing uncertainty in the geologic input data. The objective of the
optimization process is to maximize the total volume of materials of the
operation and subject to resource capacities, chemical processes, and customer
requirements. In this paper, we consider the uncertainty in material grades and
introduce chance constraints that are used to ensure the constraints with high
confidence. To address the stockpile blending problem with chance constraints,
we propose a differential evolution algorithm combining two repair operators
that are used to tackle the two complex constraints. In the experiment section,
we compare the performance of the approach with the deterministic model and
stochastic models by considering different chance constraints and evaluate the
effectiveness of different chance constraints.
- Abstract(参考訳): ヒューリスティックアルゴリズムは、様々な最適化問題を解く優れた能力を示している。
地雷スケジューリング問題の重要な要素としてのストックパイルブレンディング問題は、地質入力データに不確実性を含む連続探索空間を持つ最適化問題である。
最適化プロセスの目的は、運用材料の総容積を最大化し、資源容量、化学プロセス、顧客要求に対応することである。
本稿では,材料等級の不確実性について考察し,高い信頼度で制約を確実にする機会制約を導入する。
そこで本研究では,2つの複雑な制約に対処するために用いられる2つの修理演算子を組み合わせた差分進化アルゴリズムを提案する。
実験部では, 異なる確率制約を考慮した決定論的モデルと確率モデルとの比較を行い, 異なる確率制約の有効性を評価した。
関連論文リスト
- Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
実世界のシナリオは、しばしば多目的データ駆動最適化問題を含む。
従来の2段階の手法では、機械学習モデルを用いて問題係数を推定し、続いて予測された最適化問題に取り組むためにソルバを呼び出す。
近年の取り組みは、下流最適化問題から導かれる意思決定損失を用いた予測モデルのエンドツーエンドトレーニングに重点を置いている。
論文 参考訳(メタデータ) (2024-06-02T15:42:03Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Optimizing Chance-Constrained Submodular Problems with Variable
Uncertainties [12.095075636344536]
本稿では,制約付き多種多様な問題を捕捉する,確率制約付き部分モジュラー最適化問題について検討する。
所与の最適解に対する定数近似比という,高品質な解を得ることのできるグリーディアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-23T04:48:49Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
シミュレーション予算の制限という観点から,混合変数に基づく新しい品質多様性手法を提案する。
提案手法は、複雑なシステム設計のための意思決定者にとって貴重なトレードオフを提供する。
論文 参考訳(メタデータ) (2023-09-11T14:29:47Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
本稿では,混合整数線形最適化問題に着目したCCL手法を提案する。
CCLは線形化可能な機械学習モデルを使用して、学習変数の条件量子を推定する。
実践者が使用するオープンアクセスソフトウェアが開発されている。
論文 参考訳(メタデータ) (2022-07-08T11:54:39Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Differentially Private Convex Optimization with Feasibility Guarantees [44.36831037077509]
本稿では,凸最適化問題を解くための新しい微分プライベートフレームワークを開発する。
提案するフレームワークは、期待される最適性損失と最適化結果のばらつきの間のトレードオフを提供する。
論文 参考訳(メタデータ) (2020-06-22T15:30:52Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。