論文の概要: Optimizing Chance-Constrained Submodular Problems with Variable
Uncertainties
- arxiv url: http://arxiv.org/abs/2309.14359v1
- Date: Sat, 23 Sep 2023 04:48:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 17:07:08.642186
- Title: Optimizing Chance-Constrained Submodular Problems with Variable
Uncertainties
- Title(参考訳): 可変不確かさを考慮したチャンス制約付き部分モジュラー問題の最適化
- Authors: Xiankun Yan, Anh Viet Do, Feng Shi, Xiaoyu Qin, Frank Neumann
- Abstract要約: 本稿では,制約付き多種多様な問題を捕捉する,確率制約付き部分モジュラー最適化問題について検討する。
所与の最適解に対する定数近似比という,高品質な解を得ることのできるグリーディアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.095075636344536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chance constraints are frequently used to limit the probability of constraint
violations in real-world optimization problems where the constraints involve
stochastic components. We study chance-constrained submodular optimization
problems, which capture a wide range of optimization problems with stochastic
constraints. Previous studies considered submodular problems with stochastic
knapsack constraints in the case where uncertainties are the same for each item
that can be selected. However, uncertainty levels are usually variable with
respect to the different stochastic components in real-world scenarios, and
rigorous analysis for this setting is missing in the context of submodular
optimization. This paper provides the first such analysis for this case, where
the weights of items have the same expectation but different dispersion. We
present greedy algorithms that can obtain a high-quality solution, i.e., a
constant approximation ratio to the given optimal solution from the
deterministic setting. In the experiments, we demonstrate that the algorithms
perform effectively on several chance-constrained instances of the maximum
coverage problem and the influence maximization problem.
- Abstract(参考訳): 確率的制約は、実世界の最適化問題における制約違反の確率を制限するために頻繁に用いられる。
確率的制約を伴う幅広い最適化問題を捉えた確率制約付き部分モジュラ最適化問題について検討する。
従来の研究では、選択可能な項目ごとに不確かさが同じである場合に、確率的なknapsack制約を伴う部分モジュラー問題を検討した。
しかしながら、不確実性レベルは通常、実世界のシナリオにおける異なる確率的要素に関して可変であり、この設定の厳密な解析は部分モジュラー最適化の文脈では欠落している。
本稿では, アイテムの重量が同じ期待値であるが分散度が異なる場合に, 初めてこのような解析を行う。
本稿では, 与えられた最適解に対する定数近似比を決定論的条件から求めることによって, 高品質な解を得ることのできるグリーディアルゴリズムを提案する。
実験では,最大カバレッジ問題と影響最大化問題の複数インスタンスに対して,アルゴリズムが効果的に動作することを示した。
関連論文リスト
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Margin theory for the scenario-based approach to robust optimization in
high dimension [0.0]
本稿では、ロバストな最適化のためのシナリオアプローチを扱う。
これは、問題の不確実性によって引き起こされる可能性のある無限個の制約のランダムサンプリングに依存する。
論文 参考訳(メタデータ) (2023-03-07T13:33:46Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
確率のある不確実なパラメータを文脈的特徴情報を用いて推定できる実世界の多くの最適化問題である。
不確実なパラメータの分布を推定する標準的な手法とは対照的に,統合された条件推定手法を提案する。
当社のI CEOアプローチは、穏健な条件下で理論的に一貫性があることを示します。
論文 参考訳(メタデータ) (2021-10-24T04:49:35Z) - Runtime Analysis of Single- and Multi-Objective Evolutionary Algorithms for Chance Constrained Optimization Problems with Normally Distributed Random Variables [11.310502327308575]
独立して通常は分散しているコンポーネントのシナリオについて研究する。
期待されるコストとその分散をトレードオフする問題を多目的に定式化する。
また,本手法は,木に散らばった最小限の問題に対して最適解の集合を計算するためにも有効であることを示す。
論文 参考訳(メタデータ) (2021-09-13T09:24:23Z) - A sampling criterion for constrained Bayesian optimization with
uncertainties [0.0]
本稿では,関数を最適化し,制約を満たす確率制約最適化の問題について考察する。
このような問題に対処するために,新しいベイズ最適化法を提案する。
これは、不確実性が入力の一部から生じる状況に適用され、共同制御された制御されていない入力空間における取得基準を定義することができる。
論文 参考訳(メタデータ) (2021-03-09T20:35:56Z) - Heuristic Strategies for Solving Complex Interacting Stockpile Blending
Problem with Chance Constraints [14.352521012951865]
本稿では,材料グレードの不確実性について考察し,信頼性の高い制約を確実にするために使用される確率制約を導入する。
ストックパイルブレンディング問題と確率制約に対処するため, 2つの補修演算子を組み合わせた微分進化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-10T07:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。