論文の概要: Doctor Imitator: Hand-Radiography-based Bone Age Assessment by Imitating
Scoring Methods
- arxiv url: http://arxiv.org/abs/2102.05424v3
- Date: Mon, 24 Apr 2023 14:42:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 01:11:19.535152
- Title: Doctor Imitator: Hand-Radiography-based Bone Age Assessment by Imitating
Scoring Methods
- Title(参考訳): ドクター・イミメータ:イミメーティング・スコーリング法による手指X線撮影による骨年齢評価
- Authors: Jintai Chen, Bohan Yu, Biwen Lei, Ruiwei Feng, Danny Z. Chen, Jian Wu
- Abstract要約: 我々は,Dr. Imitator (DI) と呼ばれる手指X線写真を用いた骨年齢評価のための新しいグラフベース深層学習フレームワークを提案する。
DDIは,手形画像における解剖学的関心領域(ROI)の局所的特徴を捉え,提案したグループ・コンボリューションによるROIスコアを予測する。
さらに、患者固有のROI特徴に対する注意度とROIスコアに対する文脈注意度を計算するための、新しいデュアルグラフベースのアテンションモジュールを開発した。
- 参考スコア(独自算出の注目度): 16.48267479601728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bone age assessment is challenging in clinical practice due to the
complicated bone age assessment process. Current automatic bone age assessment
methods were designed with rare consideration of the diagnostic logistics and
thus may yield certain uninterpretable hidden states and outputs. Consequently,
doctors can find it hard to cooperate with such models harmoniously because it
is difficult to check the correctness of the model predictions. In this work,
we propose a new graph-based deep learning framework for bone age assessment
with hand radiographs, called Doctor Imitator (DI). The architecture of DI is
designed to learn the diagnostic logistics of doctors using the scoring methods
(e.g., the Tanner-Whitehouse method) for bone age assessment. Specifically, the
convolutions of DI capture the local features of the anatomical regions of
interest (ROIs) on hand radiographs and predict the ROI scores by our proposed
Anatomy-based Group Convolution, summing up for bone age prediction. Besides,
we develop a novel Dual Graph-based Attention module to compute
patient-specific attention for ROI features and context attention for ROI
scores. As far as we know, DI is the first automatic bone age assessment
framework following the scoring methods without fully supervised hand
radiographs. Experiments on hand radiographs with only bone age supervision
verify that DI can achieve excellent performance with sparse parameters and
provide more interpretability.
- Abstract(参考訳): 骨年齢評価は, 複雑な骨年齢評価プロセスにより, 臨床実践において困難である。
現在の骨年齢自動評価法は診断ロジスティクスの稀な考慮のもとに設計されており、特定の解釈不能な隠れた状態と出力をもたらす可能性がある。
その結果、モデル予測の正しさを確認することは困難であるため、医師はそのようなモデルと調和することが困難である。
本研究では,手指のX線写真を用いた骨年齢評価のための新しいグラフベースディープラーニングフレームワーク,Doctor Imitator (DI)を提案する。
DIのアーキテクチャは、骨年齢評価のためのスコアリング手法(例えば、Tanner-Whitehouse法)を用いて医師の診断ロジスティクスを学ぶように設計されている。
具体的には、DIの畳み込みは、手形写真における解剖学的興味領域(ROI)の局所的特徴を捉え、骨年齢予測のために提案した解剖学的グループ畳み込みによってROIスコアを予測する。
さらに、患者固有のROI特徴に対する注意度とROIスコアに対する文脈注意度を計算するための、新しいデュアルグラフベースのアテンションモジュールを開発した。
我々の知る限り、DIは完全教師付き手X線写真のないスコアリング法に続く最初の自動骨年齢評価フレームワークである。
骨年齢のみのx線写真による実験は、diがスパースパラメータで優れた性能を達成でき、より解釈性を提供できることを検証している。
関連論文リスト
- DeepLOC: Deep Learning-based Bone Pathology Localization and
Classification in Wrist X-ray Images [1.45543311565555]
本稿では,手首X線画像における骨病理像の局在と分類のための新しいアプローチを提案する。
提案手法は,手首X線解析における2つの重要な課題,骨の正確な局在化と異常の正確な分類に対処する。
論文 参考訳(メタデータ) (2023-08-24T12:06:10Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - An Unsupervised Deep-Learning Method for Bone Age Assessment [4.227079957387361]
骨の発達の程度を反映した骨年齢は、成人の高さを予測し、子供の内分泌疾患を検出するために用いられる。
本稿では,制約付き畳み込みオートエンコーダ(CCAE)を用いて,骨年齢の分類とBA-CCAEの洗礼を行うモデルを提案する。
北米放射線学会(Radiological Society of North America)の実験では、48ヶ月間隔での分類の精度は76.15%である。
論文 参考訳(メタデータ) (2022-06-12T02:31:36Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Coherence Learning using Keypoint-based Pooling Network for Accurately
Assessing Radiographic Knee Osteoarthritis [18.47511520060851]
膝関節症(英語: Knee osteoarthritis, OA)は、世界中の高齢者に影響を及ぼす一般的な変性関節疾患である。
現在臨床症状のある膝OAグレーティングシステムは観察対象であり、レイター間の相違に悩まされている。
本稿では,複合度と微粒度を同時に評価するためのコンピュータ支援型診断手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T19:59:13Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Ridge Regression Neural Network for Pediatric Bone Age Assessment [1.1501261942096426]
骨年齢の遅れや増加は小児科医にとって深刻な懸念である。
骨年齢評価のための統合型深層学習フレームワークを事例分割と隆起回帰を用いて導入する。
論文 参考訳(メタデータ) (2021-04-15T21:38:22Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Improve bone age assessment by learning from anatomical local regions [18.6439159025423]
本稿では,解剖学的局所認識ネットワーク(ALA-Net)と呼ばれる骨年齢自動評価モデルを提案する。
我々のモデルは解剖学的ROIを検出し、骨年齢をエンドツーエンドに推定することができる。
論文 参考訳(メタデータ) (2020-05-27T16:08:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。