論文の概要: Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies
- arxiv url: http://arxiv.org/abs/2302.08427v1
- Date: Thu, 16 Feb 2023 17:06:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 13:11:12.879283
- Title: Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies
- Title(参考訳): 自己と弱い教師付き前訓練戦略を用いた放射線・組織学的ラベルからの肝硬変診断の学習
- Authors: Emma Sarfati, Alexandre Bone, Marc-Michel Rohe, Pietro Gori, Isabelle
Bloch
- Abstract要約: そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
- 参考スコア(独自算出の注目度): 62.840338941861134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying cirrhosis is key to correctly assess the health of the liver.
However, the gold standard diagnosis of the cirrhosis needs a medical
intervention to obtain the histological confirmation, e.g. the METAVIR score,
as the radiological presentation can be equivocal. In this work, we propose to
leverage transfer learning from large datasets annotated by radiologists, which
we consider as a weak annotation, to predict the histological score available
on a small annex dataset. To this end, we propose to compare different
pretraining methods, namely weakly-supervised and self-supervised ones, to
improve the prediction of the cirrhosis. Finally, we introduce a loss function
combining both supervised and self-supervised frameworks for pretraining. This
method outperforms the baseline classification of the METAVIR score, reaching
an AUC of 0.84 and a balanced accuracy of 0.75, compared to 0.77 and 0.72 for a
baseline classifier.
- Abstract(参考訳): 肝硬変の診断は肝の健康を正しく評価する鍵となる。
しかし, 肝硬変のゴールド標準診断には, 組織学的診断(メタビルスコアなど)を得るための医療的介入が必要である。
本研究では,放射線学者が注釈付けした大規模データセットからの転写学習を弱いアノテーションとして活用し,小さな付加データセットで利用できる組織学的スコアを予測することを提案する。
そこで本研究では, 肝硬変の予測を改善するために, 弱い教師付きと自己教師付きという, 異なる前訓練法を比較することを提案する。
最後に、事前学習のための教師付きフレームワークと自己監督型フレームワークを組み合わせた損失関数を導入する。
この方法はmetavirスコアのベースライン分類よりも優れており、ベースライン分類器では 0.77 と 0.72 に対して、auc 0.84 と平衡精度 0.75 である。
関連論文リスト
- Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images [0.23960026858846614]
本研究の目的は,甲状腺シンチグラフィー画像を用いた甲状腺疾患分類を向上する自動パイプラインを開発することである。
2,643人の甲状腺シンチグラフィー画像を収集し,DG(diffuse goiter),MNG(multinodal goiter),甲状腺炎(TH)に分類した。
パイプラインは、さまざまなクラスにわたるいくつかの分類指標で、医師のセグメンテーションに匹敵するパフォーマンスを示した。
論文 参考訳(メタデータ) (2024-07-14T21:29:28Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
本報告では, 全身性炎症性反応症候群, 早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討する。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
論文 参考訳(メタデータ) (2024-07-11T00:51:32Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
そこで本研究では,MICCAI 2023 Automatic Region-based Coronary Artery Disease(冠状動脈疾患自動診断)のためのエンド・ツー・エンドの機械学習ソリューションを提案する。
X線冠動脈造影による冠動脈分画および狭窄性病変の局在性評価の方法の標準化を目的としている。
冠状動脈セグメンテーションでは平均F1スコアが37.69%、狭窄局所化では39.41%であった。
論文 参考訳(メタデータ) (2023-10-27T08:03:12Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Less is More: Adaptive Curriculum Learning for Thyroid Nodule Diagnosis [50.231954872304314]
不整合ラベルによるサンプルの発見と破棄を適応的に行うAdaptive Curriculum Learningフレームワークを提案する。
また、TNCD: Thyroid Nodule Classification データセットも提供します。
論文 参考訳(メタデータ) (2022-07-02T11:50:02Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Stratification of carotid atheromatous plaque using interpretable deep
learning methods on B-mode ultrasound images [1.1254693939127909]
頸動脈硬化は虚血性脳卒中の主要な原因であり、毎年死亡率と障害率が高い。
本稿では,頸動脈動脈プラークのリスク評価と成層化のための,頸動脈超音波画像の解釈可能な分類手法を提案する。
論文 参考訳(メタデータ) (2022-02-04T23:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。